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ABSTRACT 

 
 A growing literature reports traffic exposure impacts on children’s respiratory health, yet 
few U.S. studies have used advanced Geographic Information System modeling techniques to 
estimate exposures on a fine spatial scale.  We developed a land use regression (LUR) model to 
estimate long-term exposure to traffic air pollution for 1,387 children who participated in the Los 
Angeles Family and Neighborhood Wave Two Survey (L.A. FANS-2).  Using passive badges, 
we conducted two-week measurements of NOx and NO2 at approximately 200 sites in two 
seasons in 65 neighborhoods and built LUR prediction surfaces on a 25 x 25 meter grid over the 
L.A. Basin that explained 81%, 86% and 85% of the variation in NO, NO2 and NOx 
concentrations, respectively. Annual average concentrations at geocoded L.A. FANS-2 
residential and school locations were extracted from the LUR surfaces and weighted by time 
spent at each location for various exposure periods (current home, 1-year, 2-years, 5-years prior 
to interview). Exposure surfaces for O3 and PM2.5 were generated by kriging available 
government monitoring data.  
 Multivariate logistic regression was used to estimate associations between these exposure 
metrics and doctor-diagnosed asthma (ever), wheeze in the past year (“current wheeze”), and 
medication use for asthma and wheeze in the past year (“current medication use”). Multivariate 
linear regression was used to estimate associations with cross-sectional measures of lung 
function assessed via EasyOneTM portable spirometers. Children more highly exposed to traffic 
pollution as estimated by LUR models for NO, NO2 and NOx were approximately 30-40% more 
likely to report current wheeze regardless of adjustment for many family- and neighborhood-
level socioeconomic factors. Smaller (15%) increases in odds were observed for current 
medication use and for doctor-diagnosed asthma (per interquartile (IQR) increase in NO, NO2 
and NOx). In stratified analyses by median census tract-level economic disadvantage, odds for 
both asthma outcomes in higher SES areas only were found to increase by about 40% per IQR 
increase in traffic pollution. This may, in part, reflect differential access to health care and 
resulting differences in asthma diagnosis and reporting. In lower SES areas, we estimated 80-
100% increases in odds of current wheeze and medication use per 30 ppb increase in peak daily 
O3, while null or inverse associations emerged for peak O3 in children from higher SES areas, 
potentially reflecting differences in children’s time-activity patterns (e.g., outdoor physical 
activity) and resulting exposures during O3 peak hours in higher versus lower SES areas. 
However, these findings are based on a relatively small sample size in each SES stratum. 
 We estimated 70-100 mL reductions in lung volume and 60-100 mL/s reductions in 
expiratory flow per IQR increase in NO, NO2 and NOx in boys with one or more acceptable 
spirometry curves. Smaller associations were observed for PM2.5 (40-50 mL reductions in 
volume and 60-90 mL/s reductions in flow per IQR increase). However, when restricting 
analyses to boys with three acceptable and reproducible curves, negative associations were less 
precisely estimated and did not reach statistical significance, except for PM2.5 with FEF75 and 
FEF25-75. In girls, we estimated even greater associations between traffic pollution and expiratory 
flow (300-350 mL/s reductions in PEF and 200-300 mL/s reductions in FEF25-75 per IQR 
increase in NO, NO2 and NOx), but results were not replicated in the group with three acceptable 
and reproducible curves. We also observed reductions in PEF in girls more highly exposed to 
peak daily O3 (~100 mL/s decrement and ~400 mL/s decrement per 30 ppb increase in O3 for 
girls with one or more acceptable curves and three acceptable and reproducible curves, 
respectively). Similar to previous literature, our results suggest important differences in the 
biological impact of air pollution on lung function in boys versus girls.  
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I. EXECUTIVE SUMMARY   
Background 

There is a growing literature reporting traffic exposure impacts on respiratory health in 
children. Very few studies in the U.S. have used advanced Geographic Information System (GIS) 
modeling techniques, such as land use regression (LUR), to estimate exposures on a fine spatial 
scale. LUR models based on intensive neighborhood monitoring of traffic pollutants have not 
been developed for the Los Angeles (LA) Basin in Southern California, one of most polluted 
regions in the U.S. There is currently a lack of neighborhood-level air pollution measurements 
for Californian children that live in high traffic density areas and who may be more susceptible 
to adverse health impacts from air pollution exposure due to economic disadvantage. Thus, the 
objectives of this research were to: (1) to conduct NOx and NO2 monitoring at 200 locations 
within LA County neighborhoods with varying levels of economic disadvantage and varying 
exposures to air pollution originating from vehicular sources; (2) to use these monitoring data to 
help inform LUR models for predicting traffic pollutant exposures (i.e., NOx, NO and NO2); (3) 
to use geostatistical models to estimate regional background concentrations of O3 and PM2.5; (4) to 
evaluate associations between exposure to NOx, NO and NO2 and measures of respiratory health 
and lung function in children in conjunction with the Los Angeles Family and Neighborhood 
Survey (L.A. FANS) study; and (5) to evaluate whether concentrations of the more regionally 
distributed background pollutants (O3 and PM2.5) confound or modify the effects of exposure to the 
more heterogeneously distributed traffic-related pollutants (NOx, NO and NO2). 
 
Methods   
 We developed land use regression (LUR) models to estimate long-term exposure to 
traffic air pollution for 1,387 children who participated in the Los Angeles Family and 
Neighborhood Wave Two Survey (L.A. FANS-2) and examined associations with cross-
sectional measures of respiratory symptoms and lung function while adjusting for many different 
family- and neighborhood-level socioeconomic characteristics assessed as part of L.A. FANS-2. 
First, a campaign of NOx and NO2 monitoring using passive badges was conducted throughout 
65 L.A. FANS neighborhoods (census tracts). Nitrogen oxides (NOx), nitric oxide (NO) and 
nitrogen dioxide (NO2) were selected as markers of motor vehicle exhaust exposure for this 
study since they are relatively easy to measure (both from a logistics and cost standpoint), which 
allowed us to conduct simultaneous measurements at a large number of locations throughout 
L.A. County. Existing data indicate these pollutants serve as a good marker for localized traffic 
pollution and are associated with asthma prevalence and symptoms.1-5 Two-week measurements 
were collected during two time periods selected to best represent an annual average. These data 
were then used to build LUR prediction surfaces for NO, NO2 and NOx on a 25 x 25 meter grid 
over the L.A. Basin. Geocoded L.A. FANS-2 residential and school locations were overlaid with 
the exposure surfaces and NO, NO2 and NOx annual average estimates extracted for each 
location. Extracted annual averages were weighted by time spent at each home and school within 
various time periods to generate final exposure metrics (current home, 1-year, 2-years, 5-years 
prior to interview). Exposure surfaces for O3 and PM2.5 were also generated by kriging available 
government monitoring data for the years 2002 and 2000, respectively. Similar to the LUR 
metrics, final annual average O3 and PM2.5 exposure metrics were then created, weighting for 
time spent at home(s) and school(s). Multivariate logistic regression was used to evaluate 
associations between LUR and kriged air pollution estimates and odds of: doctor-diagnosed 
asthma (ever); wheeze, wheeze with any night waking, medication use for asthma or wheeze, 
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and sneezing or a runny or blocked nose apart from colds in the past 12 months, and more than 3 
doctor-diagnosed ear infections in a year. Multivariate linear regression was used to estimate 
changes in lung function as assessed via EasyOneTM portable spirometers with increasing air 
pollution exposure. The specific lung function parameters evaluated were: peak expiratory flow 
rate (PEF), forced vital capacity (FVC), forced expiratory volume after 1 second (FEV1), forced 
expiratory mean flow between 25% and 75% of FVC (FEF25-75), and forced expiratory mean 
flow at 75% of FVC (FEF75). 
 
Results 
 Final LUR models for the L.A. Basin explained 81%, 86% and 85% of the variation in 
NO, NO2 and NOx concentrations, respectively. Novel aspects of the LUR modeling effort 
include: (1) the use of a large number of sampling sites (~200) for simultaneous passive 
measurement of NO, NO2 and NOx over a large and complex geographic region, (2) use of  “A 
Distance Decay REgression Selection Strategy” (ADDRESS)6 to explore importance of 
geographic features within many different size buffers and develop spatial models highly 
predictive of measured concentrations, and (3) use of remote sensing data to provide additional 
information on geographic distribution of traffic sources and improve LUR model predictions. 
LUR model results indicated traffic on highways and major roads as far away as 11 km from 
measurement sites still had important impacts on measured NOx concentrations, a much greater 
spatial extent than previously reported in the literature.7 Although incorporating the influence of 
traffic at farther distances improved prediction ability for NO, NO2 and NOx, we generated a 
separate set of LUR models that excluded traffic at distances greater than 5000 m (resulting R2 
values were 0.64, 0.78 and 0.68, respectively), as concentrations of ultrafine particles have been 
shown to reach background concentration within closer proximity to roadways in LA.8-13 Thus, 
LUR models excluding traffic at greater distances may provide better surrogate estimates of 
exposure for fresh vehicle exhaust and UF and associated toxics that are also of biologic interest 
for respiratory health (even though they were less predictive for NO, NO2 and NOx).  
 Children more highly exposed to traffic pollution as estimated by interquartile (IQR) 
increases in the “more local traffic” LUR model estimates for NO (11.8 ppb), NO2 (6.1 ppb) and 
NOx (16.9 ppb) were approximately 30-40% more likely to report wheeze in the past 12 months 
(current wheeze). These estimates were robust to adjustment for many different family- and 
neighborhood-level socioeconomic factors. We observed weaker and more marginal 15% 
increases in odds of medication use for asthma and wheeze in the past year and doctor-diagnosed 
asthma per IQR increase in NO, NO2 and NOx. However, when we stratified analyses by median 
census tract-level economic disadvantage, odds for both asthma outcomes in higher but not lower 
SES areas were found to increase by approximately 40% per IQR increase in traffic pollution. 
This may, in part, reflect differential access to health care and resulting differences in asthma 
diagnosis and reporting in higher versus lower SES communities. However, in lower SES areas 
only, we estimated 80-100% increases in odds of current wheeze and medication use for asthma 
and wheeze per IQR increase in peak 8-hour O3, while null or inverse associations between peak 
O3 and these outcomes were observed for children living in higher SES areas. These results may 
in part reflect differences in children’s behaviors (e.g., time spent outdoors in summer) and 
resulting exposures in lower versus higher SES communities during high O3 pollution episodes. 
However, these findings are based on a relatively small sample size in each SES stratum. 
 Similar to previous cross-sectional studies in Europe and the U.S., we observed 
reductions in lung function with increasing exposure to traffic pollution, but our results differed 
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substantially between girls and boys and varied between children with lower and higher quality 
spirometry curves.  In boys, we estimated 70-100 mL reductions in lung volume and 60-100 
mL/s decrements in expiratory flow per IQR increases in LUR estimates of NO, NO2, and NOx. 
Slightly lower associations were observed for PM2.5 exposures (40-50 mL reductions in volume 
and 60-90 mL/s reductions in flow per IQR increase). However, when restricting analyses to 
boys with three acceptable and reproducible curves, negative associations were more imprecisely 
estimated and in general did not reach statistical significance, except for those between PM2.5 and 
FEF75 and FEF25-75.  In girls, we estimated 40-80 mL reductions in FEV1 with increasing 
exposure to LUR-estimates of NO, NO2 and NOx, but no associations with FVC. However, much 
greater associations between traffic pollution and measures of expiratory flow were observed in 
girls versus boys (300-350 mL/s reductions in PEF and 200-300 mL/s reductions in FEF25-75 per 
IQR increase in NO, NO2 and NOx). However, these results were not replicated in the group of 
girls with three acceptable and reproducible curves. This may be due to the smaller sample size 
and/or the characteristics of the select group for which we had three reproducible curves 
available (i.e., girls of higher SES and with higher exposure to O3 and lower exposure to traffic 
pollutants). Similar to previous U.S. cross-sectional studies,14-16 we also observed reductions in 
PEF in girls more highly exposed to peak daily O3 (~100 mL/s decrement and ~400 mL/s 
decrement per 30 ppb increase in O3 for girls with one or more acceptable curves and three 
acceptable and reproducible curves, respectively).  
 
Conclusions  
 L.A. FANS-2 children more highly exposed to traffic pollution were more likely reported 
as having current wheeze symptoms (66% of children with current wheeze were also reported as 
having a doctor-diagnosis of asthma, 34% did not). We also observed positive associations 
between LUR traffic exposure metrics and odds of doctor-diagnosed asthma and medication use 
for asthma and wheeze in the past year, although these associations were not as strong as those 
estimated for current wheeze. Differences in access to health care and physician practices for 
diagnosing asthma across communities may be factors affecting our results for these outcomes. 
This conclusion was supported by analyses in which we stratified on census-tract level economic 
disadvantage: in higher but not lower SES areas, we observed associations between LUR-
estimated traffic exposures and odds of both asthma outcomes similar in magnitude to those 
observed for current wheeze. Relatively strong associations between exposure to peak daily O3 
and current wheeze and medication use for asthma and wheeze were observed in lower SES 
areas, while no or inverse associations were observed in higher SES areas, which may reflect 
differences in children’s time-activity patterns and resulting exposures across communities 
during high O3 pollution episodes. We observed reductions in lung function with increasing 
exposure to traffic pollution, but our results differed substantially between girls and boys and 
were not consistent for children with poorer versus better quality spirometry curves. Decrements 
in lung volumes and flows with increasing exposure to traffic pollution were observed in boys, 
but when restricting to subjects with higher quality spirometry curves (three acceptable and 
reproducible curves), results were imprecise and associations did not reach statistical 
significance, except for those between PM2.5 and FEF75 and FEF25-75. For girls, much stronger 
associations were observed between LUR-estimates of traffic exposure and expiratory flows 
(PEF and FEF25-75) than for boys, however these traffic effects were not replicated in the smaller 
and select sub-group of girls with three acceptable and reproducible curves. Girls who were more 
highly exposed to peak daily O3 had substantially lower measures of PEF. Similar to previous 
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studies, our results suggest important differences in the biological impact of air pollution on lung 
health in boys versus girls.  
 
II. INTRODUCTION   
Scope and Purpose 
 A large literature links outdoor air pollution exposure to adverse respiratory health effects 
in children and adults.17-21 Recently, air pollution research has focused on the contributions of 
specific motor vehicle exhaust components such as polycyclic aromatic hydrocarbons (PAHs) 
adsorbed to particles from diesel engines and ultrafine particles (less than 0.1 µm in aerodynamic 
diameter), which are more able to penetrate cellular targets in the lung and enter systemic 
circulation.1,22-24 Various measures of traffic exhaust exposure have been associated with adverse 
respiratory outcomes including reduced lung function and growth, asthma hospitalizations, and 
prevalence of asthma, wheeze, bronchitis, and allergic rhinitis.4,25-27 Many of the studies linking 
pollutants originating from traffic to poorer respiratory health have relied on surrogate exposure 
measures such as proximity to and extent of traffic on roadways near residences and schools. A 
relatively new approach for predicting outdoor traffic pollutant concentrations is land use 
regression (LUR) modeling. Land-use regression utilizes measured levels of the pollutant of 
interest as the dependent variable and traffic, topographic, and other geographic variables as 
independent predictor variables in a multivariate regression model.28,29  The incorporation of 
site-specific variables in this method detects small area variations of traffic related pollution 
more effectively than other methods of geostatistical interpolation.28-30   

European studies associated levels of PM2.5, soot, and NO2 assessed via LUR modeling 
with the development of adverse respiratory symptoms such as wheezing early in life.26,31,32  
LUR-based estimates of PM2.5 were also associated with an increase in exhaled NO (a marker of 
lung inflammation) and reduced forced vital capacity in Canadian schoolchildren.33 Overall, 
there have been very few studies in the U.S. using LUR exposure metrics to examine traffic 
impacts on respiratory health in children, and no such study has been conducted in the Los 
Angeles (LA) Basin in Southern California, one of most polluted regions in the U.S. where 
traffic is a major source of air pollution. Currently, neighborhood level air pollution 
measurements for Californian children that live in high traffic density areas are lacking and these 
children may also be more susceptible to adverse health impacts from such exposures due to 
economic disadvantage. Gunier et al.34 recently reported that low-income children and children 
of color in California are more likely to live in census block groups with high traffic density and 
concluded that future studies should target these high density traffic areas and evaluate 
differences in health risks by income and race/ethnicity.   

Thus, the objectives of this research were to: (1) to conduct NOx and NO2 monitoring at 
200 locations within LA County neighborhoods with varying levels of economic disadvantage 
and varying exposures to air pollution originating from vehicular sources; (2) to use these 
monitoring data to help inform land use-based regression (LUR) models developed to predict 
traffic pollutant – i.e., NOx, NO and NO2 – exposures; (3) to use geostatistical models to estimate 
regional background concentrations of O3 and PM2.5; (4) to evaluate associations between 
exposure to NOx, NO and NO2 (as estimated by the developed LUR models) and and measures 
of respiratory health and lung function in children in conjunction with the Los Angeles Family 
and Neighborhood Survey (L.A. FANS) study;35 and (5) to evaluate whether concentrations of the 
more regionally distributed background pollutants (O3 and PM2.5) confound or modify the effects of 
exposure to the more heterogeneously distributed traffic-related pollutants (NOx, NO and NO2). 



 5

Traffic-Related Air Pollution Impacts on Children’s Respiratory Health 
Traffic Impacts on Childhood Lung Function 
 Most existing studies examining effects of traffic-related air pollution on lung function in 
children were cross-sectional, conducted in Europe, and used traffic exposure metrics based on 
residential and/or school proximity to high traffic roadways. Most of the work done in the U.S. 
has relied on ambient monitoring data to estimate air pollution exposure. A study in Canada33 
examined associations between LUR exposure metrics and lung function; no similar study has 
been conducted in the Los Angeles Basin in Southern California. Here we summarize results 
from both cross-sectional and longitudinal studies of air pollution impacts on lung function in 
childhood. 
 
Cross-Sectional Studies  
 Most studies examining traffic air pollution impacts on cross-sectional measures of lung 
function in children were conducted in Europe. Wjst et al.36 reported significant associations 
between traffic density in school districts and expiratory flow measures in 4,320 German 
schoolchildren ages 9-11 years. Fritz and Herbath37 similarly reported lower lung function in 
German preschoolers (5 years of age) living in areas with traffic-related pollution profiles. 
Studying the impact of German reunification using serial cross-sectional assessments of 
respiratory health, Sugiri et al.38 reported that improvement in lung function with decreasing TSP 
and SO2 levels among 2,574 east German 6 year olds was weaker in children living within 50 m 
of a busy street and this finding was attributed to the 50-75% increase in traffic during this 
period in eastern Germany. In the Netherlands, Brunekreef et al.39 reported negative impacts of 
truck traffic density on several lung function indicators (FEV1, PEF, FEF25-75) ranging between 
2.5% and 8% reductions in function per 10,000 trucks/day for children residing within 1000 m of 
a motorway. Black smoke, NO2 and car traffic density tended to show similarly negative 
associations with FEF25-75. A second, larger follow-up study did not find similar associations 
between truck or car traffic density, or school or residential proximity to traffic and lung 
function, although associations were still observed for respiratory symptoms.40 In a novel 
approach, Hogervorst et al.41 measured oxygen-radical formation by particles as a marker for 
potential to cause oxidative stress, which is one of the hypothesized pathways by which traffic 
particles may induce lung inflammation. Exposure to air pollution exhibiting higher radical 
formation per particle mass – and to a lesser extent radical formation per volume of air – reduced 
lung function among Dutch children attending schools located at varying distances from traffic. 
However, only 4 days of measurements at schools during the study period were collected and 
assumed to represent long-term exposure. Also, contrary to expectation, increasing PM10 levels 
were found to be positively associated with FEV1 and FVC. Other European studies reported no 
associations between various measures of traffic near homes and schools and lung function 
measures.42,43  
 In a recent Canadian study, Dales et al.33 reported reductions in FEV1 (expressed as a 
percentage of predicted) with increases in neighborhood-level SO2, PM2.5 and black smoke 
concentrations modeled via LUR as well as reductions in FVC for SO2 and PM2.5 in 2,328 
children ages 9-11 years living in Windsor, Ontario (although none of these estimates reached 
traditional statistical significance). Non-significant reductions in lung function were also 
observed with increasing length of roadways within 200 m of the home. Rosenlund et al.44 
reported deficits in FEV1 as a percentage of FVC, FEF25-75 and PEF with increasing exposure to 
LUR-modeled NO2 at residences in a cross-sectional, school-based study of 2,107 children ages 
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9-14 years living in Rome, Italy. Associations appeared to be stronger in girls, older children, 
children of higher SES and those exposed to parental smoking.   
 Most of the U.S. studies used ambient air monitoring data to estimate exposures to 
routinely measured, criteria air pollutants. A number of these studies reported reductions in lung 
function with increases in exposure to pollutants that could potentially be acting as (imperfect) 
markers of motor vehicle exhaust exposures, specifically TSP and NO2,45 NO2 and particle 
acidity (a marker of very small particles),46 and PM10, PM2.5, NO2 and acid vapor.14 Early results 
from the Harvard Six Cities Study47 showed no associations between exposure to TSP, PM10 and 
PM2.5 and FEV1, FVC, and MMEF for a sample of 5,422 10-12 year olds.  Yet, a second follow-
up study of 24 cities and over 13,000 children ages 8-12 years found that as PM2.1 and sulfate 
particle concentrations increased, so did the percentage of children with abnormal lung 
function.46 More recently, Mortimer et al.48 reported that asthmatic children living in the San 
Joaquin Valley of California, who had been exposed to higher levels of CO, NO2 and PM10 –
interpreted as markers of motor vehicle exhaust – in utero during early pregnancy (1st-2nd 
trimesters) as well as in the first 6 years of life had lower lung function at ages 6-11 years. These 
effects were, however, limited to African-Americans, children diagnosed with asthma before age 
2 yrs and children exposed to maternal smoking during pregnancy. Using dispersion modeling to 
predict outdoor residential concentrations, Oftedal et al.49 reported that early and lifetime 
exposures to PM10, PM2.5 and NO2 were associated with reduced forced expiratory flows, but not 
forced expiratory volumes in 2,307 9-10 year old children that had lived in Oslo, Norway since 
birth.  
 Apart from traffic-related air pollution, a number of studies also linked O3, a more 
regionally distributed secondary pollutant, to worse lung health in children. Kuenzli et al.15 
reported that higher lifetime exposure to O3 negatively affected flow measures but not FEV1 and 
FVC in U.S. college freshman ages 17 to 21; there were no associations found for PM10 and 
NO2. In a follow-up study, Tager et al.16 reported negative associations between flows and 
lifetime O3 exposure in subjects with a low FEF25-75/FVC ratio, a marker of narrower small 
airways. Galizia and Kinney50 observed lower lung function among U.S. male college freshman 
who grew up in counties with high long-term O3 levels compared to those who grew up in low 
O3 counties. Also, some of the studies cited above for showing traffic-related associations, also 
reported associations with O3.14,45,46  It should be noted that PM10 and PM2.5 are complex 
mixtures of particles in different size ranges and with different chemical characteristics. The 
contribution of direct traffic particle emissions to these mixtures is highly complex and depends 
on source profiles, location and season.51,52 Thus, the existing evidence based on these cross-
sectional studies does not allow conclusions as to whether mainly traffic-related air pollutants or 
regionally distributed pollutants (i.e., O3 and secondarily formed particles), or both types of 
pollutants together impact lung function in children. 
 
Longitudinal Studies  

The Children’s Health Study (CHS) – which focused on asthma and lung development in 
4th through 10th graders living in 12 Southern Californian communities – is one of the largest and 
most comprehensive studies of the long-term consequences of air pollution exposure on 
children’s respiratory health.1 Based on a follow-up of 1,759 children from age 10 to 18 years 
(n=747 at last follow-up), children living in the most polluted community (i.e., highest levels of 
NO2, PM10, PM2.5, acid vapor and elemental carbon) had a growth deficit in FEV1 of 
approximately 100 mL (~7% for girls and ~4% for boys) as compared to children living in the 
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cleanest community.53-55 Concentrations of these pollutants were highly correlated in all 
communities (r values ranging from 0.64-0.97) and considered to represent a mixture of traffic-
origin pollutants. The proportion of children with clinically low lung function at age 18 
(FEV1<80% of predicted) was estimated to be 5 times larger in the most polluted community 
compared with the cleanest community (29 µg/m3 versus 6 µg/m3 PM2.5.56 No associations were 
observed between O3 and changes in lung function over the 8-year period. Based on an analysis 
of a sub-sample of 110 children who moved after the initial CHS examination, Avol et al.57 
reported an improvement in lung function growth among children who moved to lower PM10 
areas, and slower lung function growth in children who moved to higher PM10 areas.  More 
recently, Gauderman et al.58 reported significant deficits in 8-year growth of FEV1 (-81 mL) and 
MMEF (-127 mL/s) in children living within 500 m of a freeway compared those living at least 
1500 m away from a freeway. Joint models showed that both residential proximity to freeways as 
well as regional air pollution (i.e., central site measures of NO2, PM10, PM2.5 EC, and acid 
vapors) had detrimental and independent estimated effects on lung function growth.  

Outside of the U.S., in another major prospective study, Rojas-Martinez et al.59 examined 
lung function growth in Mexico City schoolchildren over a 3 year period. Long-term exposures 
to O3, PM10 and NO2, as assessed by monitors located <2 km from schools, were associated with 
deficits in lung function growth, even when adjusting for other pollutants. Studies in Austrian 
school children reported negative impacts of O3 and to a lesser degree PM10 on lung function 
growth during summer, however these deficits were compensated for during the winter seasons 
and over the 3.5 years of study, no overall deficits in lung function growth among children living 
in more polluted areas were observed.60-63 Based on a follow-up study of 200 Austrian children, 
Neuberger et al.64 reported small improvements in lung function which they attributed to a 
decrease in ambient NO2 levels over 5 years. 
 
Summary of Studies on Childhood Lung Function 
 Existing studies provide evidence for air pollution from traffic related sources negatively 
impacting lung function in children. Findings from the CHS study indicate both regional and 
local traffic-related pollutants contribute to lung function deficits in Southern Californian 
children, a finding further corroborated by a study conducted in Mexico City. However, there is 
very limited research examining potential interactions between socioeconomic and other 
contextual factors and traffic-related air pollution on lung function in children. 
 
Traffic Impacts on Respiratory Symptoms in Childhood  

Throughout the 1990’s, a growing number of studies reported associations between 
various traffic exposure metrics and poorer childhood respiratory health. Although these mostly 
European studies differed in which respiratory endpoints and traffic exposure measures they 
evaluated, in general, they reported positive associations between residential and/or school 
proximity to heavy traffic roadways and adverse respiratory outcomes including asthma 
hospitalizations, and prevalence of asthma, wheeze, bronchitis, and allergic rhinitis.36,42,65-73 
Furthermore, traffic pollutant concentrations at homes and schools derived from sophisticated 
emissions and air dispersion models were linked to a greater number of hospitalizations for 
wheezing bronchitis in girls,74 prevalence of asthma, wheeze and cough,43 and respiratory 
medication use.75  

The Dutch researchers cited above39 also reported associations between residential 
proximity to major freeways and chronic respiratory symptoms assessed cross-sectionally via 
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questionnaires in 1,068 Dutch schoolchildren.71 Cough, wheeze, runny nose, and doctor-
diagnosed asthma were more often reported for children living within 100 meters of a freeway. 
Truck traffic intensity and the concentration of black smoke measured at schools were also found 
to be associated with these outcomes, with relationships more pronounced in girls than boys.  In 
a larger follow-up study, respiratory symptoms including current wheeze, ever asthma, current 
conjunctivitis, current itchy rash, eczema ever, current phlegm (with no cold) and current 
bronchitis were found to also be positively associated with the level of truck traffic, but not with 
car traffic on major freeways within 400 meters of schools and 1000 meters of homes.40 Positive 
associations were almost entirely restricted to children with bronchial hyper-responsiveness 
and/or sensitization to common allergens. Symptoms also increased with increasing levels of 
traffic-related air pollutants (PM2.5, soot and NO2) measured at schools; levels of these pollutants 
also increased near freeways with high truck traffic counts.  

Several studies assessed exposure to traffic exhaust pollutants using residence-based 
and/or personal NO2 measurements or ambient measures in non-urban areas where traffic is the 
main source of air pollution. In a Swiss study, the incidence of upper respiratory symptoms 
increased with increasing residential levels of outdoor but not indoor NO2 (measured by Palmes 
tubes) in preschoolers.76 Additionally, annual average NO2 was associated with the duration of 
all respiratory episodes and with upper respiratory episodes. The investigators suggested that the 
lack of association between indoor NO2 and some of the outcomes might indicate that outdoor 
but not indoor sources of NO2 represent the relevant exposures originating from outdoor sources, 
i.e. motor vehicle exhaust. Studnicka et al.77 reported associations between prevalence of “ever 
asthma”, wheeze, and cough apart from colds and three-year mean concentrations of NO2 in 
eight non-urban communities where traffic was the only source of air pollution.  In a study of 
nine year olds living near major roads in two urban areas and one suburban area of a West 
German city, Kramer et al.78 reported associations between outdoor NO2 (measured by Palmes 
tubes at children’s residences) and atopy (assessed by respiratory symptom diaries, skin-prick 
tests and allergen-specific serum IgE). Outdoor NO2, but not personal NO2, was related to hay 
fever, symptoms of allergic rhinitis, wheezing, and sensitization against pollen, house dust mites 
or cats, and milk or eggs in urban areas. Outdoor NO2 concentrations correlated fairly well with 
traffic levels outside the children’s homes (r=0.70), again suggesting the relevance of traffic-
related air pollutants for these outcomes and the usefulness of NO2 as a marker of vehicle 
exhaust exposure.  
 In addition to their landmark studies that associated air pollution and development of 
lung function, the Children’s Health Study (CHS) also examined the influence of air pollution on 
respiratory symptoms including asthma and bronchitis in Southern California schoolchildren.1 In 
the first cross-sectional examination of 3,676 4th, 7th and 10th graders, higher exposure to acid 
vapor (HNO3+HCl)  and NO2 (as measured by central site monitors in each community) were 
associated with greater odds of wheeze in boys. A subsequent cross-sectional study reported 
greater prevalence of chronic phlegm production and bronchitis in asthmatic children living in 
communities with higher levels of ambient PM10; NO2 and acid were also associated with 
increased phlegm prevalence in asthmatics.79 Based on analyses of data collected prospectively 
from 1996 to 1999, bronchitic symptoms in asthmatics were associated with yearly variability in 
PM2.5, organic carbon (OC), NO2, and O3.80 Organic carbon was of interest due to its potential to 
elicit oxidative stress responses that potentially could be important for asthma exacerbation.22 
Odds ratios for yearly within-community variability in air pollution were larger than those for 
between-community 4-year average concentrations and the most stable effect estimates in multi-
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pollutant models were for OC and NO2. In the CHS communities, NO2, acid vapor, and the 
particulate matter pollutants (PM10, PM2.5, OC, elemental carbon (EC)), are correlated with each 
other and considered markers of vehicular sources.55  

Following up on the potential importance of assessing within-community variability in 
traffic pollution levels, Gauderman et al.2 measured outdoor NO2 during summer and winter 
outside the homes of 208 CHS children. They also determined residential distance to the nearest 
freeway, traffic volumes on roadways within 150 m of the home, and modeled pollution from 
nearby roadways using the CALINE air dispersion model. Lifetime history of doctor-diagnosed 
asthma, wheezing and asthma medication use were associated with outdoor NO2, closer 
residential proximity to a freeway, and CALINE model-based estimates of pollution from 
freeways. However, associations for these outcomes were not observed with modeled pollution 
for non-freeway roads and traffic volumes within 150 meters of homes. The authors suggested 
that this might be due to the low relative importance of emissions from smaller roadways 
compared to large freeway arterials in LA and/or more accurate measures of traffic on freeways 
versus local roads. McConnell et al.3 later examined associations between asthma and wheeze 
and traffic pollution in a new cohort of children ages 5-7 years attending 13 schools in Southern 
California (9 communities were the same as in the original CHS, 4 were new). Children residing 
within 75 m of a major road (defined as freeways, other highways, and arterial roads) had higher 
odds of lifetime asthma, prevalent asthma, and wheeze. These effects appeared to be greater for 
long-term residents (i.e., living at same residence since at least 2 years of age) with no parental 
history of asthma. The higher risk of asthma near major roadways decreased to background rates 
at 150-200 m.  Similar associations were observed for model-based traffic exposure metrics. 
Since very few children in the study lived within 75 m of a freeway, associations with asthma 
and wheeze were due to proximity to non-freeway roads. This discrepancy with the previous 
study2 that had found associations only for proximity to freeway traffic, may reflect differences 
in the distribution of freeways and major roads around homes in these different cohorts. More 
recently, Jerrett et al.81 extended the work by Gauderman et al.2 by assessing associations 
between incident asthma and NO2 measured outside children’s homes for 217 CHS participants. 
They excluded children with a lifetime history of asthma at study entry, included an 11th 
community (Lompoc) with local traffic but no major freeways, and excluded a 12th community 
(Lake Arrowhead) with little local traffic. Incident asthma cases were defined as children who 
answered yes to doctor-diagnosed asthma on any annual interview during up to 8 years of 
follow-up. Incident asthma was positively associated with annual residential NO2. In a multilevel 
model, the within-community effects indicative of long-term local traffic sources were similar in 
magnitude to effects of community-average NO2 across communities, suggesting that both 
regional and local pollution contributed to the associations seen with new onset asthma. 
 In another California school-based study, Kim et al.4 evaluated associations between 
asthma and bronchitis and exposure to traffic pollutants (black carbon (BC), NOx, NO2, PM2.5 
and PM10) in 3rd to 5th graders at 10 schools in the San Francisco Bay Area, a region with high 
traffic congestion, but generally good regional air quality due to coastal breezes. Concentrations 
of BC, NOx, NO and to a lesser extent NO2 were higher at schools located within 300m 
downwind of a freeway compared to those measured at schools upwind or further removed from 
major traffic sources. There was less variation in PM2.5 and PM10 concentrations across schools 
and the study average PM2.5 was similar to the annual average PM2.5 concentration measured at 
the government monitoring station located about 15 miles south of the study area. NOx and NO2 
concentrations at schools far from traffic (>1,000 m) were also similar to those measured at the 
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government site. Odds of a doctor-diagnosis of asthma in the preceding 12 months increased 
with interquartile increases in school levels of NOx, NO and BC for children who lived in the 
same home for at least one year. School-based pollutant concentrations were assumed more 
reliable estimates of overall exposure for these children since most children in the study lived 
within walking distance of the schools and did not use buses. In a follow-up study, Kim et al.5 
sought to refine exposure estimates using GIS-derived traffic measures at the children’s 
residences. Positive associations were observed between several different traffic exposure 
metrics and odds of current asthma (i.e., asthma episode in the previous 12 months). The most 
consistent exposure-response relation was observed for the metric traffic density within 150 m of 
the home with an approximately 2-fold increase in odds in the highest quintile of exposure. The 
highest odds were observed among those living within 75 m of a freeway/highway.  Distance to 
freeway/highway of 150 m or less was most strongly correlated with measurements of NO, NO2 
and NOx taken at 52 sites (schools and homes) in the study area. 
    While observing associations between residential LUR estimates for NO2 and reduced lung 
function (particularly expiratory flows) in Italian schoolchildren, Rosenlund et al.44 did not find 
similar associations between LUR exposure estimates and prevalence of respiratory symptoms or 
allergic sensitization assessed by skin prick tests. 
 There is also a growing literature reporting traffic impacts on respiratory health during 
the first years of life. As part of the “Traffic-Related Air Pollution and Childhood Asthma” 
(TRAPCA) study in Europe, exposure to NO2 assessed via LUR modeling was associated with 
dry cough at night and bronchitis in the first year of life, and LUR-derived measures of PM2.5 
and soot (determined as the reflectance of the PM2.5 filters) with sneezing, runny/stuffed nose in 
the first two years of life in infants residing in Munich, Germany.31,32 In the Netherlands, LUR 
measures of PM2.5, soot and NO2 were linked to wheezing, doctor-diagnosed asthma, 
ear/nose/throat infections and flu/serious colds at age four.26 In Sweden, higher exposure to 
traffic-origin NOx and PM2.5 during the first year of life (assessed via emission inventories and 
air dispersion modeling) was associated with persistent wheeze, lower peak expiratory flow and 
sensitization to pollen at four years of age.82 As part of the on-going Cincinnati Childhood 
Allergy and Air Pollution prospective birth cohort study, Ryan et al.83 created a LUR model of 
elemental carbon (EC) attributable to traffic sources (ECAT). ECAT levels at monitoring sites 
throughout the Cincinnati airshed were estimated based on speciation of PM2.5 samples and 
multivariate receptor and chemical mass balance models. ECAT was considered a marker of 
diesel exhaust particulate (DEP). Infants residing at homes with higher LUR estimates for ECAT 
were more likely to be reported as suffering from recurrent wheeze during the first year of life 
(i.e., parent reported wheezing without a cold at approximately 6-7 months of age and at least 
one other occasion before the first birthday). 
 A number of European studies have reported associations between exposure to traffic air 
pollution children and allergic sensitization. Duhme et al.68,69 reported associations between self-
reported traffic near residences and odds of allergy symptoms in German children 5-15 years of 
age as assessed by the ISAAC definition “sneezing, or runny/blocked nose apart from colds in 
the previous 12 months”. Weiland et al.67 also reported positive associations between self-
reported traffic near homes and ever having hay fever or allergic rhinitis in German seventh- and 
eighth- graders based on questionnaire reports. More recently, Morgenstern et al.32 reported 
associations between sneezing, runny/blocked nose apart from colds and exposure to LUR 
estimates of PM2.5 in Munich children during the first and second year of life. In a follow-up of 
the same children at age six years, the positive associations between LUR estimates of PM2.5 and 
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soot and sensitization to inhalant allergens and pollen as assessed by IgE antibody levels 
persisted.84 For the variable ‘‘living close to main roads,’’ a clear dose–response was identified 
with the highest effect estimates for sensitization in children living less than 50 m from busy 
streets. Similarly, Nordling et al.82 also reported greater odds of allergic sensitization to pollen at 
age 4 as assessed by IgE levels in Swedish children more highly exposed to traffic pollution 
during the first year of life. However, a similar study of Dutch children found increased odds of 
sensitization to food allergens but not total IgE at age four for children more highly exposed to 
traffic pollution as assessed by LUR models.26 Rosenlund et al.44 reported no associations 
between LUR estimates of NO2 exposure and allergic sensitization based on skin prick tests in 
Italian children at the ages of 9-14 years. 
 Although exposure to environmental tobacco smoke is a known risk factor for otitis 
media, little information is available regarding potential associations with air pollution.85,86 As 
part of the TRAPCA study in Europe, Brauer et al.85 examined associations between exposure to 
traffic pollutants and physician diagnosis of otitis media (ear infections) in the first two years of 
life for children residing in the Netherlands (n=3,700) and Munich (n=650). Children more 
highly exposed to traffic, as assessed by LUR model estimates of NO2, PM2.5 and soot, were 10-
24% more likely to report physician diagnosed ear infections in the first two years of life. 
 
Summary of Studies on Childhood Respiratory Health 

Research conducted over the last 10 years provides compelling evidence of traffic-related 
air pollution impacts on respiratory health in Californian children. Results from the CHS suggest 
traffic pollutants can not only exacerbate symptoms in asthmatics, but that traffic pollution also 
causes new onset asthma and that, similar to lung function, both local and regional pollution are 
important (at least in Southern California). Studies associating early life exposures to reports of 
wheeze and allergic sensitization in children as young as one year old provide further evidence 
of traffic pollutant’s possible early life impact on the development of respiratory disease and 
asthma. 
 
Potential Confounding and/or Modifying Effects of Psychosocial Stress and Neighborhood 
Environment on Associations between Air Pollution and Respiratory Health 

Although there is growing evidence indicating traffic pollution increases incidence of 
wheeze and asthma in addition to exacerbating existing disease, the etiology is complex with 
multiple contributing factors.87 In addition to genetic propensity, aspects of both the social and 
physical environment are likely important in asthma causation and progression. Reports of 
higher asthma morbidity in low socioeconomic status (SES) neighborhoods might reflect 
independent main effects as well as the interplay between social and physical aspects of the 
community.88,89 Outdoor air pollution is one physical neighborhood factor that can impact 
asthma, and there is evidence that economically disadvantaged neighborhoods are often more 
exposed to air pollution.34,90,91 Low SES neighborhoods’ influence on asthma morbidity may also 
reflect differences in access to health care, health behaviors such as diet and smoking, and other 
aspects of the social environment. For example, neighborhood factors, such as economic 
disadvantage, violence, low social cohesion, and low social capital may act through stress 
pathways to worsen asthma outcomes.88 Higher levels of psychosocial stress have been linked to 
greater morbidity in asthmatic children,92-95 and there is growing evidence from prospective 
studies that psychosocial stress may contribute to the development of wheezing illnesses and 
asthma, especially in early life.88,96-98 Recently, Suglia et al.99 reported reductions in FEV1 and 
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FVC among girls ages 6-7 years with high exposure to parental verbal aggression, independent 
of SES, tobacco smoke exposure, birth weight, and a history of respiratory illness. In boys, high 
exposure to community violence was found to be associated with reduced lung function.  

A postulated biologic mechanism by which psychological stress may cause or worsen 
asthma is through chronic inflammation pathways. Imbalance of physiologic processes that lead 
to chronic inflammation (e.g., hypothalamic-pituitary-adrenal (HPA) axis function, the 
proteases-antiproteases, the oxidants-antioxidants) can occur under chronic stress.93,99 Stress is 
associated with increased secretion of adrenocorticotrophic hormone and cortisol, which have 
been observed to enhance the production of inflammatory cytokines;98,100 altered cortisol 
expression has been negatively associated with lung function in humans.101 Although high levels 
of stress-related hormones can acutely suppress inflammation in the airways, receptors for these 
molecules can become down-regulated under chronic exposure, leading to diminished regulation 
of inflammatory responses to asthma triggers.98,102  

Two studies examined potential interactive effects between chronic stressors and air 
pollution on asthma. Using a LUR model of NO2 to estimate traffic air pollution exposure among 
413 children living in East Boston, Massachusetts, Clougherty et al.103 reported an elevated risk 
of asthma with increasing levels of NO2 only among children with above-median lifetime 
exposure to violence. Among children always living in the same community, this association was 
magnified, furthermore NO2 levels during the year of diagnosis were most predictive of asthma 
outcomes. Chen et al.104 examined interactions between chronic exposure to traffic air pollution 
and family stress in predicting biologic and clinical outcomes in 73 asthmatic children ages 9-18 
years residing in Vancouver, Canada. Exposure was assessed via a LUR model of NO2 
concentrations. Children were interviewed about life stress and asthma-relevant inflammatory 
markers (cytokine production, immunoglobulin E (IgE), eosinophil counts) were measured. They 
also completed daily symptom diaries and performed PEF measures at baseline and at six months 
of follow-up. Parents also reported on their children’s symptoms. Contrary to Clougherty et al.103 
who reported greatest risk of asthma among children exposed to both high pollution and 
violence, in this study, higher chronic stress was associated with heightened inflammatory 
profiles (i.e., higher interleukin-5, IgE, and eosinophil counts) as traffic pollution decreased. In 
other words, the detrimental effects of chronic psychosocial stress were more evident among 
children living in lower pollution areas.104 To explain these findings, the investigators 
hypothesized a threshold above which chronic physical exposures such as air pollution begins to 
have effects on health outcomes, and that one role of chronic stress may be to lower the threshold 
at which physical exposures affect biologic and clinical outcomes. One reason why this may 
occur is that when chronic exposure to traffic-related air pollutants is more modest, there may be 
greater room for social factors to increase or decrease vulnerability biologically.  Longitudinally, 
higher chronic stress was also associated with increases over time in symptoms (as recorded in 
diaries and by parent report) and decreases in PEF, but again only in lower pollution areas.  

Thus, it has been argued that in order to adequately evaluate the contributions of the 
physical environment to health outcomes such as asthma, it is important to consider social 
aspects not only as potential confounders but also as effect measure modifiers.90 Similar to L.A. 
FANS-1,35 the L.A. FANS-2 survey collected extensive data on individual, family, and 
neighborhood characteristics of study participants, allowing us to evaluate associations between 
traffic air pollution and respiratory health taking into account both physical and social aspects of 
neighborhoods. While most previous studies examining this issue relied solely on SES measures 
mainly derived from administrative data sources (such as census data) to assess adverse social 
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conditions, the L.A. FANS study collected information directly from participants such as ratings 
of neighborhood safety, cohesion and social support, thus providing us with additional and 
detailed measures of the neighborhood social environment to be considered in our analyses of air 
pollution’s impact on respiratory health. 

 
L.A. FANS Background 

The Los Angeles Family and Neighborhood Survey (L.A. FANS) is a longitudinal study 
of families in Los Angeles County and of the neighborhoods in which they live. The study is 
specifically designed to answer key research and policy questions in several areas, with a focus 
on understanding neighborhood, family, and peer effects on children’s development and well-
being.35 The first wave of data collection (L.A. FANS-1) was a field survey of 3,090 households 
conducted from April 2000 to January 2002. L.A. FANS-2 is a continuation of this study and is 
funded by grants from NICHD, NIA and NIEHS. It is a collaboration of three institutions: 
RAND, UCLA, and Research Triangle Institute (RTI). The design of L.A. FANS-2 included re-
interviewing all respondents from L.A. FANS-1 and adding a new sample of residents who 
moved into each neighborhood between the two waves. L.A. FANS-2 was also expanded to 
collect biomarkers of stress and health for children and adults of all ages.  
 Since one of the main goals of L.A. FANS is to provide a rich dataset for examining the 
effects of neighborhoods and families on children’s development and well-being, a multistage 
method was used to select subjects for L.A. FANS-1, with stratified random sampling first of 
census tracts (which is the definition of neighborhoods for the study), followed by census blocks, 
families, and finally adults and children within selected families. Census tracts in LA County 
were broken down into three strata based on the percent of the tract population living below the 
poverty line. Very poor tracts were defined as those in the top 10% of the poverty distribution, 
poor tracts were those in the 60-89th percentile of the poverty distribution and non-poor tracts 
were those at or below the 59th percentile of the poverty distribution.35 Figure 1 shows LA 
County census tracts by poverty ranking. Since an approximately equal number of tracts in each 
stratum were selected, the very poor and poor tracts were over sampled. Also, households with 
children under age of 18 years were over sampled since a key focus of the study is on children’s 
health. Among those L.A. FANS-1 children who lived in the LA Basin (n=3,017), 32.6% lived in 
"very poor" tracts, 33.9% lived in "poor" tracts", and 33.5% lived in "non poor" tracts.  Within 
each household, one adult (18 years or older) was randomly selected for interview, as was one 
child (17 years or younger). Only children ages 9 years or older were directly interviewed. The 
primary caregiver of the randomly selected child (usually the child’s mother) was also 
interviewed about the child (regardless of the child’s age) and if the randomly selected child had 
one or more siblings with the same biological or adoptive mother and the same primary 
caregiver, one of the siblings was also randomly selected for interview. L.A. FANS-1 included 
3,090 households in 65 census tracts (with 30%, 31% and 39% of the households in the very 
poor, poor and nonpoor strata, respectively).  The children surveyed as part of L.A. FANS-1 
were predominately Latino (59.1%), but also included African Americans (8.3%), Asians 
(6.1%), Pacific Islanders (0.7%), Native Americans (1.4%) and children reporting mixed 
races/ethnicities (4.1%); 20.2% of the children were identified as White.  
 The L.A. FANS-2 survey was conducted between August 2006 and November 2008. The 
design of L.A. FANS-2 included: (1) re-interviewing all L.A. FANS-1 respondents, both adults 
and children, even if they moved out of the neighborhood, (2) re-interviewing all L.A. FANS-1 
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respondents who remained in the neighborhood, and (3) interviewing a sample of new entrants 
into the neighborhood. Those individuals who participated in both L.A. FANS-1 and L.A. 
FANS-2 are called “panel” respondents. Personal interviews were done with L.A. FANS-1 
respondents still living somewhere in Los Angeles County, while new entrants had to reside in 
the 65 original L.A. FANS-1 census tracts in LA county. If the panel respondent had moved out 
of LA County, an abbreviated telephone interview was performed (and no health measures were 
collected). Our analyses include respondents residing in LA County. In L.A. FANS-1, Primary 
Care Givers (PCGs) were asked whether child respondents were ever diagnosed with asthma by 
a doctor or other health professional, and if yes, whether they had one or more asthma attacks in 
the previous year. In L.A. FANS-2, the assessment of asthma was modified to ask about wheeze 
and medication use for asthma and wheeze, regardless of doctor-diagnosis of asthma (based on 
the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire).  

In addition, a battery of physiological measurements were added to L.A. FANS-2: 
anthropometry (height and weight) in children ages 2 years and older, glycosylated hemoglobin, 
and total and HDL cholesterol via dried blood spots and cortisol in saliva samples collected on 
the day after the interview upon waking, 30 minutes after waking, and at bedtime in children 
ages 3 years and older; and lung function using portable spirometers and blood pressure in 
children ages 5 years and older.  
 A total of 939 families with children were interviewed as part of L.A. FANS-2; parents in 
these households completed questionnaires regarding 1,387 children. Of these children, 1,091 
were panel participants (i.e., participated in both surveys) while 296 were new entrants to the 
study.  Of the 1,387 interviewed children, 1,225 also completed some part of the health measures 
module and 1,070 participated in spirometry. Originally, the L.A. FANS-2 study planned to 
enroll approximately 4,000 children (all of the L.A. FANS-1 children plus a sample of new 
entrants into each neighborhood). Despite extending data collection by approximately 1.5 years, 
the total number of L.A. FANS-2 child participants was approximately 35% of the originally 
planned enrollment number. This limitation is discussed further in the Discussion section. 

 
III. MATERIALS AND METHODS  
GIS Exposure Model Development 
 We estimated long-term exposure to traffic-related air pollution for L.A. FANS-2 
participants using land use based regression (LUR) modeling. First, a campaign of NOx and NO2 
monitoring using passive badges was conducted throughout the 65 LA FANS Wave One 
neighborhoods (census tracts). Nitrogen oxides (NOx), NO (which can be assessed as the 
difference in measured NOx and NO2 concentrations, and NO2 were selected as markers of motor 
vehicle exhaust exposure for this study since they are relatively easy to measure (both from a 
logistics and cost standpoint) and allowed us to conduct simultaneous measurements at a large 
number of locations throughout L.A. County. Existing data indicate these pollutants serves as a 
good marker for localized traffic pollution and are associated with asthma prevalence and 
symptoms.1-5 Two-week measurements were collected during two time periods selected to best 
represent an annual average. These data were then used to build LUR prediction surfaces for NO, 
NO2 and NOx on a 25 x 25 meter grid over the LA Basin. Geocoded L.A. FANS-2 residential 
locations were overlaid with the exposure surfaces and NO, NO2 and NOx annual average 
estimates extracted for each location. Extracted annual averages were weighted by time spent at 
each home within various time periods to generate final exposure metrics (1-year, 2-years, 5-
years prior to interview). Exposure surfaces for O3 and PM2.5 were also generated by kriging 
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available government monitoring data for the years 2002 and 2000, respectively. Similar to the 
LUR metrics, final estimates for annual average O3 and PM2.5 exposure were then created, 
weighting for time spent at home(s). 
 
NOX Neighborhood Monitoring 
Sampling location determination 

We selected neighborhood NOx and NO2 monitoring locations (n = 201) using a location-
allocation algorithm that took into account variability in traffic pollution and the spatial 
distribution of the Los Angeles Family and Neighborhood Study (L.A. FANS) participants. 
Kanaroglou et al.105 provides a detailed discussion of the location-allocation methodology. The 
estimation domain for locating optimal sampling sites for this project covered more than 10,000 
km2 of the L.A. Basin (Figure 2). Briefly, the location-allocation algorithm involves a two-step 
algorithm that: (1) builds a demand surface of spatial variation (i.e., semi-variances) and (2) 
solves a constrained spatial optimization problem to determine locations for a pre-specified 
number of samplers. The demand surface was created using two criteria: first, samplers should 
be placed where the pollution surface is expected to exhibit high spatial variability and second, 
population density should be relatively high. To create an initial pollution surface across the L.A. 
metropolitan area, a LUR model was applied to predict NO2 concentrations by adapting L.A. 
land use and transportation data to the regression coefficients previously derived for the San 
Diego area.106 Specifically, traffic volumes (within 40-300m and 300-1000m), road lengths 
(within 40m) and distance to coast were used to estimate an initial surface for calculation of the 
semi-variance surface.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2. Spatial analysis domain for sampling design 
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Given a first estimate of the pollution surface, spatial variability of pollution Z(x, h) at 
location x with a distance h is determined by the following semivariogram equation:107 
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This creates the demand surface that satisfies the first criterion noted above. To satisfy the 

second criterion, we appropriately modified the demand surface achieved through Eq. (1) by 
intensifying the demand for pollution monitors in areas with high densities of populations. To 
achieve this effect, a weighting scheme is implemented according to the Eq. (2): 
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PR is the population of interest in region R within the study area and PT is the population for 

the entire study area. Thus, a semivariance surface reflects the spatial variability of a pollutant 
and is a key to apply the location-allocation algorithm.105  The sampling network based on the 
location-allocation algorithm places samplers in areas of high, middle and low concentrations in 
a systematic way. 

The task at hand was to place all monitors within 500 m of the Census Tracts (CT) of 
residences included in L.A. FANS and, at the same time, in areas with the most spatial variation 
in traffic air pollution. Thus, CTs that included L.A. FANS residences were buffered to a 
distance of 500 m and the eligible census blocks were assigned a population weighted semi-
variance value based on the specific population counts from L.A. FANS. The original 65 CTs 
sampled for L.A. FANS-1 and resulting respondent population counts were utilized, as L.A. 
FANS-2 was on-going at the time of this work.  Thus, the monitoring sites were optimized to 
residential locations of LA FANS respondents at the beginning of the follow-up period between 
Wave One (April 2000-January 2002) and Wave Two (October 2005-November 2008). The CTs 
were widely dispersed throughout the urbanized area of LA, including coastal areas, 
neighborhoods in the downtown and south central urban areas, and more suburban areas on the 
eastern side of the basin and in the San Fernando Valley. Irregular lattice points were created 
using street block centroids for locating sampling sites. Finally, monitoring locations were 
selected using a maximum attendance location-allocation algorithm Eq. (3) based on the 
population-weighted semi-variance. 
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where k is the number of demand locations and m is the number of candidate locations. In our 
case, k = 201, including 15 co-located sites with the governmental monitoring stations. The 
weight wi at location i represents demand, while dij is the distance between locations i and j. xij is 
the allocation decision variable attaining the value of 1 if demand location i is served by a station 
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in j and 0 otherwise. Attendance linearly decreases with distance at the rate of parameter b, a 
value determined by the maximum distance of influence. 

 
Selection of monitoring periods 

The goal of our geostatistical modeling was to estimate long-term (annual average) air 
pollution exposure to traffic-related pollutants and thus required selecting two-week monitoring 
periods that would most closely approximate such averages. Therefore, we obtained existing 
hourly measurement data for CO and NO2 from existing, government monitoring stations in LA 
County and generated time series plots of moving two-week averages for the time period 1998-
2003. The time series trends were compared to the average of all two-week averages during this 
time period and the months of February-March and September-October were selected as having 
two-week averages most closely approximating the long-term trend. The exact two-weeks 
monitored during each of these general time periods were selected based on logistical 
considerations (e.g., installation and deployment of monitors was conducted on weekends to 
minimize the impact of Los Angeles commuter traffic on our ability to hang all monitors within a 
48-hour period).  
 
Neighborhood Monitoring Using Ogawa Samplers 

We used passive air samplers (part number PS-100) from Ogawa & Company USA, Inc. 
(Pompano Beach, FL) to conduct two weeks of monitoring in two seasons from September 16 to 
October 1, 2006 and from February 10 to February 25, 2007.  Each air sampler was loaded with 
two cellulose collection pads – one pad to measure NO2 (part number PS-134, pre-coated by the 
manufacturer with triethanolamine (TEA)) and the other for NOx (part number PS-124, pre-
coated by the manufacturer with triethenolamine and PTIO). PTIO is an oxidation reagent which 
oxidizes NO to NO2, which is then collected on the NOx filter together with NO2.108  Thus, NO 
concentrations were derived as the difference between NO2 and NOx concentrations. To protect 
against rain damage, each sampler was placed inside a plastic shelter that shielded the sampler 
from the top but allowed air to flow freely through the bottom (Figure 3).  The shelter was 
constructed from a 4-inch diameter PVC plumbing cap, with eye bolts on the sides and top of the 
shelter, which were used to secure the shelter to the mounting locations. This was the same 
shelter methodology utilized in the East Bay Children’s Respiratory Health Study.109 

In each season, samplers were placed in 186 neighborhood locations, which were selected 
using the location-allocation algorithm described above. Detailed maps with latitude and 
longitude coordinates and 50 and 200 meter buffers were made of each site selected by the 
location-allocation algorithm. Based on these maps, field teams visited each site and selected the 
closest possible installation location, completed a field log sheet detailing this location, and took 
digital photographs as well as GPS readings. Appendix A provides an example field log sheet. 
We used Magellan Explorist 200 GPS devices to record the latitude, longitude, and accuracy of 
each coordinate, using the North American 1983 datum.  The rated accuracy of the Magellan 
Explorist 200 is within 3 meters.  These GPS readings were then plotted in ArcView GIS 
software to ensure all selected locations were within 200 m of the original algorithm locations. 
The majority of neighborhood sites where the samplers were installed were within 50 m of the 
exact location selected; all sites were within 200 m of the selected location.  In addition to the 
neighborhood monitors, we co-located a sampler at each of 15 South Coast Air Quality 
Management District (SCAQMD) air monitoring stations in the Los Angeles County area (Table 
1).  We also deployed 50 duplicate samplers and collected data from 30 field blanks during each 
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monitoring session. Sites with duplicate monitors were randomly selected. Similarly, 30 sites 
were randomly selected for a field blank, i.e., the blank traveled with the sampler for the selected 
site, but remained inside the Ogawa re-sealable pouch and storage vial while the other samplers 
were being installed or removed, and was returned to the refrigerator at the end of each 
installation or removal day. 

Samplers were washed and loaded by the Ogawa & Co. USA contract laboratory at the 
Research Triangle Institute (RTI International, Research Triangle Park, North Carolina). Once 
the samplers were washed in de-ionized water and loaded with the NOx and NO2 sample 
collection pads, each sampler was sealed inside an Ogawa plastic re-sealable pouch (part number 
PS-111), and then placed within an Ogawa airtight storage vial (part number PS-155).  The 
samplers were shipped overnight to arrive 2-3 days prior to the start of monitoring.  Samplers 
were placed in a refrigerator until the day of deployment, when they were placed in coolers 
(without ice) and brought out to the field locations by car.  During each monitoring session, all 
samplers were installed over a 48-hour period.  When each sampler was installed, the field staff 
would record the exact time of installation; the time of removal two weeks later was required 
to be no more than +/- 2 hours of the installation time.  Therefore, each sampler remained in the 
field for two weeks +/- 2 hours.  When the samplers were collected, the field staff also recorded 
the exact collection time, sealed the sampler into the re-sealable pouch and then into the storage 
vial, placed the sampler into the cooler (without ice), returned to our offices and placed the 
samplers into the refrigerator.  During both the installation and collection efforts, field blanks 
were placed in the coolers along with the other samplers, traveled in the car with the batch of 
samplers, and were returned to the refrigerator at the end of each day.  Once all the samplers 
were collected, they were shipped overnight to the Ogawa laboratory for analysis. 

Field staff followed a strict protocol for installing and removing the samplers in the field.  
We identified the exact location of installation for each sampler, using text descriptions and 
photographs of the exact pole, fence, or tree on which the sampler was to be hung.  Samplers 
were installed approximately 8 to 10 feet above the ground level (the height of each sampler was 
recorded on the log sheet).  Duplicate samplers were installed either side-by-side or on opposite 
sides of the pole (“back-to-back”), ensuring that duplicates were hung at the same height.   

During installation and collection efforts, two additional GPS measurements were taken 
at each location (total of 4 measurements per site, per season).  Appendix B includes a sample 
log sheet where field staff recorded the sampler installation times, installation height, and GPS 
coordinates with accuracies. 

In total, of the 186 samplers deployed in each season to neighborhood sites, 
measurements were obtained for 183 sites in September 2006 and for 181 sites in February 2007 
(some monitors were stolen or vandalized).  Eight neighborhood sites and one SCAQMD 
monitoring site were relocated slightly in February 2007 because access to the exact location 
where the sampler was installed in September 2006 was unavailable. Thus, in total, we used 181 
sites for the LUR analysis, modeling the average of the two, two-week readings.  Duplicate 
measurements were available for 49 sites in September 2006 and 47 sites in February 2007. 

The samplers were analyzed by the Ogawa & Co. USA contract laboratory at the 
Research Triangle Institute (RTI International, Research Triangle Park, North Carolina).  The 
sampler pads were analyzed for NO2 and NOx according to the manufacturer’s protocol.110 The 
sample absorbance for each pollutant was used to calculate the collected weight of the pollutant 
on each collection pad.  The average collected weight of all the field blank samplers was 
subtracted from the corresponding collected weight for the samplers exposed in the field, 
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separately for NO2 and NOx. The nitric oxide (NO) blank filter weights were calculated as the 
difference in the blank-adjusted NOx and NO2 collected weights.  The blank-adjusted weights in 
nanograms for NO2 and NO were converted into concentrations (ppb) by multiplying by the 
corresponding concentration conversion coefficient (αNO2 = 56 or αNO = 60) and dividing by the 
exposure time of the sampler, in minutes. Then, the concentration of NOx was calculated as the 
sum of the concentrations of NO2 and NO.  

Finally, GPS coordinate readings for each site needed to be combined into one single 
coordinate location for the LUR modeling, factoring in information about the accuracy of each 
reading.  Latitude and longitude information was converted into UTM coordinates and the 
accuracy recorded in feet was converted into meters.  For each site, we compared each GPS 
reading with each of the other readings for that site by calculating the distance in meters between 
the two readings and comparing this to two times the sum of the accuracies of these readings. 
 

Distance between two readings = SQRT [ (lat1 – lat2)2 + (long1 + long2)2 ] 
 
If this calculated distance was greater than two times the sum of the accuracies of these readings, 
then the reading with the inferior accuracy was removed.  The remaining GPS readings were 
averaged to generate the best possible GPS measure of that site.  With the exception of 5 sites 
where obtaining reliable GPS coordinates were difficult (mostly due to natural canyons or tall 
buildings obstructing GPS satellite signals), the average accuracy was approximately 5 meters; 
25% of readings had accuracies of 3 meters or better, 50% had accuracies of 4 meters or better 
and 75% had accuracies of 6 meters or better. 
   
Land Use Regression (LUR) Modeling 

The neighborhood NOx and NO2 measurement data were then used to develop a land use 
based regression model for the L.A. Basin. LUR treats the pollutant of interest as the dependent 
variable and proximate land use, traffic, and physical environmental variables as independent 
predictors.29 Thus, the methodology seeks to predict pollution concentrations at a given site 
based on surrounding land use and traffic characteristics. Typically, land use regression models 
use information on land use classification (e.g., commercial, industrial, institutional), road 
networks, traffic, population distribution and physical properties (Jerrett et al., 2005). These 
variables were applied in our modeling process.  In addition, we used new sources of land use 
information such as remote sensing-derived greenness and soil brightness. The overall steps were 
as follows: (1) neighborhood monitoring locations were mapped using ESRI ArcGIS software 
based on the average GPS coordinates described above; (2) buffers ranging in size from 50 to 
15,000 meters were constructed around each site and various land use, traffic and physical 
environmental characteristics within these buffers calculated; (3) an ADDRESS selection 
strategy6 was used to determine multivariate linear models that best predicted measured NO, 
NOx and NO2 concentrations; (4) model diagnostics were used to examine the efficacy of the 
model predictions; (5) the resulting models were used to generate NO, NOx and NO2 annual 
average exposure surfaces over the entire L.A. Basin on a 25 X 25 m grid. The following 
sections provide detailed methods for each of these steps. 
 
Calculation of Model Input Parameters 
Traffic data 

Three types of roadway configuration and traffic volume data were analyzed for their 
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ability to predict traffic related pollution. They included Dynamap data from TeleAtlas (Global 
Crossroads, Boston, MA), Highway Performance Monitoring System (HPMS) data from the 
National Transportation Atlas Database, and Metropolitan Planning Organization (MPO) data 
from the Southern California Association of Governments (SCAG). Since each of these data 
sources has some limitations and because traffic was of great importance for the exposure 
contrasts, extensive efforts were made to derive the most comprehensive traffic data available. 
 
TeleAtlas Dynamap 
We used Teleatlas’ Dynamap 2000 (TeleAtlas Global Crossroads, Boston, MA) as our base 
roadway configuration and traffic volume data because the underlying road network had the 
most accurate spatial representation when compared to digital orthophotos. The Dynamap data 
were combined into a mosaic from individual county files with repeated road segments removed 
before the analysis. The complete Dynamap physical coverage provided traffic volumes (i.e., 24-
hour Annual Average Daily Traffic (AADT) traffic counts) for 2.5% of the road network in LA 
(18504 out of 740047 roadway segments) during the period from 1987 to 2005 (Table 2). The 
median AADT value projected to year 2005 from measured road segments within a road 
category (e.g., highway with or without limited access) was assigned to road segments of the 
same category; i.e. to impute traffic data to road segments without measurements. The circular 
area distances (buffers) we chose for LUR model development ran from 50 m to 5000 m at an 
interval of 100 m. Such large buffer sizes were selected because previous studies in L.A. 
indicated influence from land use over this extended spatial range.111 Buffer statistics included 
total vehicle miles traveled (count * km) for: (1) highways (including primary roads with limited 
access or interstate highways (A1) and primary roads without limited access or state highways 
(A2)); (2) major roads (i.e., secondary and connecting roads (A3)); (3) highways and major roads 
(A1 + A2 + A3); and (4) all roads (A1 + A2 + ... + A7, A4 = local roads, A5 = one way vehicle 
dirt trails, A6 = road ramps, A7 = road as other thoroughfare) (Table X). Within a circular 
distance of j of sampler i, total vehicle miles traveled (VMT) v

jiT ,  was estimated by summing all 
(k) traffic volumes (Vi,j,k) of a road segment (l) within that search distance.  
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VMT estimated in equation (1) thus include statistics for highways, major roads, highways + 

major roads, and all road traffic categories. 
 
Highway Performance Monitoring System (HPMS) Data 

HPMS data cover highways and major roadways in LA and include modeled traffic for 
each road segment (http://www.fhwa.dot.gov/policy/ohpi/hpms/; accessed July 1, 2008). The 
HPMS network covers 92% of all highways and 54% of all major roads, a much greater 
coverage than TeleAtlas’ Dynamap. Although more complete than the TeleAtlas Dynamap in 
terms of traffic counts, the HPMS physical road network was found to be simplified (e.g., the 
curvature of some road segments were straightened) compared to the TeleAtlas road network and 
digital orthophotos and locations of some roads were shifted by up to 100 m. Thus, these data 
offered the advantage of greater completeness, but with the disadvantage of lower spatial 
accuracy. Similar to the TeleAtlas' Dynamap data, we generated buffer statistics for total vehicle 
miles traveled (count * km) for highways and major roadways based on the HPMS data.  

http://www.fhwa.dot.gov/policy/ohpi/hpms/�
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Combined HPMS and TeleAtlas Dynamap Data 
To overcome the weakness in Dynamap traffic count data, we conflated the HPMS data to 

the corresponding Dynamap road segments that did not have traffic measurements. To minimize 
the rate of mis-assignment of HPMS traffic count data to Dynamap roadway segments, the 
conflation was performed for highway and major roadways separately. We found that none of 
the parallel highways were less than 200 m apart in the two maps and major roads were less than 
100 m apart in the L.A. Basin. When a highway in the TeleAtlas' Dynamap was within 100 m of 
a highway in the HPMS roadway map, they were treated as the same highway and the highway 
traffic count from the HPMS data was assigned to the corresponding highway in the Dynamap 
data. At distances greater than 100 m, however, we considered a Dynamap highway as not 
corresponding to the HPMS highway and instead assigned a traffic count based on imputation of 
the Dynamap counts as described above. Overall, 92% of the highways in the Dynamap were 
conflated with traffic data from HPMS and for 8% we employed imputation. The conflation and 
imputation process for the Dynamap major roadways were completed in a similar fashion, except 
that roadways had to be within 50 m of each other for a HPMS value to be assigned to a 
Dynamap roadway segment. Otherwise, the median traffic data from a corresponding road 
category (i.e., A3) in Dynamap were imputed. Overall, 54% of the major roadways in Dynamap 
were conflated for traffic data with the HPMS data and for 46% we employed imputation. To 
avoid mis-assignment of traffic counts at road intersections, all the HPMS roads were split into 
polyline segments of a maximum length of 10 m. This was necessary because the conflation was 
done through a spatial join process that used the mid-point of a roadway as the location for the 
minimum distance calculation and assignment, i.e., a Dynamap road segment used its midpoint 
location on the roadway to locate the closest midpoint of a road segment in HPMS. 

Similar to the imputed Dynamap data, the buffer statistics for the combined HPMS and 
Dynamap data included total vehicle miles traveled (count * km) for highways (including 
primary (A1) and secondary (A2) highways), major roads (A3) and both (A1 + A2 + A3). In 
conflating HPMS traffic data to TeleAtlas Dynamap data, possible errors will occur at the 
intersections of highways or major roads.  Specifically, one direction of traffic might be 
mistakenly assigned to another direction of the same road category (highway or major road) at 
intersections. We found that imputation of TeleAtlas Dynamap data using road network FCC 
(Feature Class Classification) was a better predictor in LUR models than data from the conflation 
process, and thus only imputation data were used in final models. The limitation for imputation 
of traffic based on FCC is that even though some of the road network has the same FCC 
classification, they might have different traffic volumes. 
 
SCAG Metropolitan Planning Organization (MPO) data 

The SCAG MPO traffic data are mainly used for planning purposes 
(http://www.scag.ca.gov/modeling/index.htm). The data included not only physical roadway 
traffic volumes but also traffic volumes for "connectors" which carried the unattributed traffic 
load from one region to another.  The connectors were represented in the road network but do not 
exist in the real world. Similar to the two methods described above, the buffer statistics for the 
combined MPO data included all roadways. 

Employing the three methods described above, the estimated total VMT for various buffer 
sizes were then added separately and in addition to other spatial covariates in ADDRESS to 
model NOx concentrations.  
 

http://www.scag.ca.gov/modeling/index.htm�
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Road network and slope gradient 
We also used the road network configuration (including highway, major and local roads) from 

Dynamap as surrogates for traffic related pollution. The total length c
jiL ,  (m) of all road segments 

(k) of road category c within a circular search distance j of sampler i was estimated by: 
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As a separate roadway factor potentially predictive of pollution, the slope of a truck route was 

defined as an angle in degrees. We used truck route slope gradient in our analyses because we 
found that truck routes alone explained more than 40% of variability in pollutant concentrations. 
Furthermore, trucks routes correspond well with highways in Los Angeles and trucks have a 
much higher rate of pollutant emissions when accelerating on hills.  

We first converted the Dynamap roadway network into raster cells and assigned each raster 
cell a slope derived from a digital elevation model (DEM) produced by the US Geological 
Survey (USGS, 1999). The average slope Mi,j of all the truck route segments (k) within a circular 
search distance j of sampler i was estimated by: 
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We also included distance to truck routes as a potential explanatory variable during model 

selection. Truck routes were extracted from HPMS data for 2007 and the perpendicular distance 
to the closest truck route for each monitoring site was created for the study region. The HPMS 
data include nationally designated truck routes designated for use by dimensioned commercial 
vehicles under the Surface Transportation Assistance Act (STAA) of 1982. Nationally 
designated truck routes include the Interstate System, non-Interstate routes specifically listed in 
23CFR658 and the other existing Federal-aid Primary (FAP) routes as defined in 1991. These 
routes are to be coded as "1" in HPMS Item 28.112 

Also, the number of major road intersections inside each circular buffer area was calculated to 
identify whether areas with more intersections have higher NOx concentrations. 

 
Tasseled-cap transformation 

Current LUR models use road network information as a surrogate for levels of traffic- related 
pollution; however, effects from some land use types such as parking lots, which have similar 
spectral reflectance as roads, are usually unavailable in road network data and thus, unaccounted 
for in LUR models. In addition, most land use variables such as industrial, commercial and open 
land use applied in LUR models to date were in originally classified from remote sensed data. 
The most comprehensive, high resolution (finer than 30 m) and freely available global coverage 
remote sensing data are Landsat Enhanced Thematic Mapper Plus (ETM+) data. Because of the 
complexities involved with display and extraction of information contained in the Landsat ETM+ 
data (7 bands), a tasseled-cap transformation113 was used to reduce the number of channels to be 
considered, and to provide a more direct association between signal response and physical 
processes on the ground. Tasseled-cap indices for LA were derived from the ETM+ data 
collected from a nominal altitude of 705 kilometers in a near-polar, near-circular, sun-
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synchronous orbit at an inclination of 98.2 degrees, imaging the same 183-km swath of the 
Earth's surface every 16 days (http://landsat.gsfc.nasa.gov/). The ETM+ imagery we acquired 
included three visible (resolution 30 m), three infrared (30 m), two thermal (60 m), and a 
panchromatic (15 m) band. The scenes for LA were at path 41/row 36, 41/37 and 40/37, all 
captured on June 21, 2001. These images were orthorectified by the United States Geological 
Survey (USGS) and projected to UTM (Universal Transverse Mercator) zone 10N coordinate 
system with a WGS84 datum (World Geodetic System of 1984). Orthorectification is the process 
by which the geometric distortions of the image are modeled and accounted for, resulting in a 
planimetricly correct image. Because the Earth is in 3D while most sensors are in 2D, 
orthorectification corrects for many of the anomalies resulting from this conversion. The success 
of the orthorectification process depends on the accuracy of the digital elevation map and the 
correction formulae. Because the root mean square error is less than 30 m, the EMT+ data were 
not atmospherically and topographically corrected. 

The tasseled cap transformation is an orthogonal transformation of the reflective bands of the 
TM data,113 in which the first component, brightness, is related to the amplitude of reflectance 
associated with soils and impervious surfaces such as concrete and asphalt. Current LUR models 
use road network information as a surrogate for traffic related pollution; however, effects from 
some land use such as parking lots, which have similar spectral reflectance to roads, are usually 
unavailable. The second component, greenness, is orthogonal to brightness and is strongly 
related to the amount of green vegetation and, therefore, inversely related to the amount of 
impervious area. Unlike open space defined for LUR, greenness is independent of brightness and 
increases with increasing proportions of green vegetation. Thus, greenness might be a better, 
though inversely related, surrogate for the degree of influence of traffic or lack of stationary 
sources.  

Here, we utilized average tasseled cap greenness and brightness in buffer sizes ranging from 
100-5000 meters at 100 meter increments as potential predictor variables in the LUR models. 
 
Land use characteristics 

Land use data for L.A. were acquired from the Southern California Association of 
Governments (SCAG) for the year 2000. Major land use types included commercial, residential, 
industrial, and open land use. The total area Ai,j of a land use type within a circular buffer search 
distance j of sampler i was estimated by summing over all (k) areas of a land use type inside the 
buffer:  
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Additionally, physical geographic variables like distance to coast, elevation, and coordinates 

of latitude and longitude were calculated for each sampler location and used as covariates for our 
ADDRESS modeling process.  
 
Model selection and diagnostics 

For the model selection process we used ADDRESS (A Distance Decay REgression 
Selection Strategy).6  The selection process includes multiple steps and, at each step, a full 
spectrum of correlation coefficients and buffer distance decay curves are used to select a spatial 
covariate of the highest correlation (compared to other variables) at its optimized buffer distance. 
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At the first step, the series of distance decay curves are constructed using the measured 
concentrations against the chosen spatial covariates. A variable with the highest correlation to 
pollutant levels at its optimized buffer distance is chosen as the first predictor of the LUR model 
from all the distance decay curves. Starting from the second step, the prediction residuals are 
used to construct new series of distance decay curves and the variable of the highest correlation 
at its optimized buffer distance is chosen to be added to the model. This process continues until a 
variable being added does not contribute significantly (p>0.10) to the model performance. The 
distance decay curve yields a visualization of change and trend of correlation between the spatial 
covariates and air pollution concentrations or their prediction residuals, providing a transparent 
and efficient means of selecting optimized buffer distances. The spatial variables used in this 
research include various traffic data derived as described above, road network and truck slope 
gradient, remote sensing vegetation greenness and soil brightness, land use characteristics and 
population density. However, not all the variables were included in the final LUR model. The 
buffer distances ran from 0-100 m to 0-200 m and to the maximum buffer distance 5000 m 
(interval 100 m). Because primary and secondary highways and major roads are densely 
distributed throughout LA, any subject’s exposure at their residence is influenced not only by the 
nearest roadways and traffic but likely also by urban-scale traffic patterns that vary over ranges 
of 5 km or more. Thus, the maximum distance of a buffer was set to 5000 m. However, if a 
distance decay curve still showed an upward trend at 5000 m, the maximum buffer distance was 
further extended until a downward trend was identified. In an urban environment, correlations 
might not be zero even at very high buffer distances because of the influence of background 
pollutant concentrations; however, we expected to see a decrease in the influence of certain 
emission sources, such as emissions from a roadway, after a large enough distance.  

To test the efficacy of the prediction models, model diagnostics included (1) evaluating 
whether selected variables were collinear based on variance inflation factors (VIFs); (2) outlier 
assessment, i.e. determining Cook's distances114 to assess whether a single observation changed 
regression estimates; (3) examining whether spatial autocorrelations of the prediction residuals in 
our final optimized models existed based on the Moran's I statistic;115 (4) assessing whether 
predictions satisfied the U.S. EPA (Environmental Protection Agency) requirements of a 
prediction model116 by adopting the normalized mean bias (NMB) (see eq. 5) and normalized 
mean error (MME) (see eq. 6) tests below; (5) conducting a Chow test117 to assess whether large 
sample sites would benefit LUR modeling results; and (6) applying cross-validation techniques 
to 16 random samples for model reliability tests. 
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*
iC  and iC refer to the predicted and observed pollutant concentrations at sampler i.  

The Moran's I statistics were conducted on a first and second order Queen’s contiguity 
matrix118 to the Thiessen polygons119 created from the sampler sites. Statistical significance was 
tested using a permutation test with 999 iterations. Although a location-allocation algorithm was 
applied to locate samplers, the samplers were also restricted to residential census tracts of 
subjects in the LA FANS health study. If samplers were clustered within census tracts of 
residence, it would be impossible to remove the near range autocorrelation with fixed effects or 
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with standard autoregressive techniques. Therefore all models were refit in STATA 8.0 adding a 
cluster parameter (based on census tract ID) to our ADDRESS models and also using 
Generalized Estimating Equations (GEE)120 clustered on the census tracts where the monitors 
were located. An “exchangeable” correlation structure was used for the GEE model, assuming all 
the measurements inside a census tract were equally correlated. Sensitivity analyses were also 
done with robust standard error estimation using census tract as the cluster unit.  

The EPA’s suggested performance criterion for NMB is ±5% to ±15%, and for NME 30–
35% of pollutant levels greater than 60 ppb (Ci ≥ 60 ppb).116 For the Chow test,117 half of the 
total sites available were randomly selected from each of four quartile groups of NOx 
concentrations and the remaining measurements were used separately to model NO, NO2 and 
NOx using the same spatial covariates from the full dataset. The Chow test identifies structural 
stability of regression models of the two subsets compared to the pooled full dataset.121  

The ADDRESS model was developed using the measured monitoring station concentrations 
as dependent variables and the above 5 categories of spatial covariates as predictors. The final 
model was then used to predict pollutant concentrations on a 25 X 25 meter grid using the 
selected spatial covariates and corresponding optimized buffer distances.  
  
O3 and PM2.5 Kriging  
 We used geostatistical interpolation to estimate long-term (annual average) exposure to 
the more regionally distributed pollutants O3 and PM2.5. These models originate from spatial 
interpolation techniques and result in the creation of a pollution surface, whereby pollution levels at 
sites other than monitoring stations are estimated. The most advanced form of spatial interpolation 
is kriging, because it produces the best linear unbiased estimate (BLUE) and allows for mapping of 
error variances. These variances can be used to view the location of errors for the predicted 
pollution surface122and may be incorporated into subsequent uncertainty models. Data required for 
this model include a network of sampling sites chosen based on factors such as the extent of 
analysis, topography of local area, local emissions, and the scale of variability of the measured 
pollutant. Kriging models exploit spatial dependence in the data to develop continuous surfaces 
of pollution.29 Beyond random error or noise in the data, spatial dependence embodies two types 
of effects. First-order effects, otherwise known as global trends, measure broad trends in the data 
over the entire study area. In contrast, second-order effects measure local variations that are a 
function of distance between the points.29,115 

To derive the annual average PM2.5 kriged exposure surface, we interpolated annual 
PM2.5 measurement data from 23 state and local district monitoring stations in the LA basin for 
the year 2000 using 5 interpolation methods: bicubic splines, two ordinary kriging models, 
universal kriging with a quadratic drift, and a radial basis function multiquadric interpolator.123-

125 The estimates were based on year 2000 monitoring data as it contains the first complete run of 
PM2.5 samples for the LA Basin. Figure 4 shows the modeling domain and location of PM2.5 
monitors. Because of the limited number of monitoring sites, a leave-one-out cross-validation 
was conducted to select a kriging method which created the highest prediction power. After 
cross-validation, we used a combination of universal kriging and multiquadric models. This 
approach takes advantage of the local detail in the multiquadric surface and the ability to handle  
trends in the universal surface. We averaged estimated surfaces based on 25-m grid cells. 

For ozone, the average of the four highest 8-hr maximum averages for 2002 at 42 sites 
(Figure 5) were modeled using ordinary kriging; an additional 42 sites surrounding the study area 
were used solely to better estimate the correlation structure in the data.  The correlation structure 
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of the data was modeled using a spherical model estimation of the semivariance. Similar to 
PM2.5, we averaged estimated surfaces based on 25-m grid cells. 
 
Exposure Assessment for L.A. FANS participants 
 As part of the L.A. FANS-2 survey, residential history information (i.e., addresses and 
dates in each home) were asked of all adult participants as part of an Event History Calendar 
(EHC). The EHC calendar collected data for residences occupied within the last six years for 
new entrants to the study. Since respondents were asked when they moved to a given residence, 
the start date for the earliest residence lived in during the 6-year window varies. Panel 
respondents were asked to report all residences they lived in since the L.A. FANS-1 interview, a 
time span that could have included more than six years depending on the timing of the two 
interviews. Here we utilized residential history information collected as part of L.A. FANS-2. 
Thus, for new entrants all homes which fell within a six-year window prior to the L.A. FANS-2 
interview are included. For panel respondents, the histories include the residence location at L.A. 
FANS-1 (which may extend some period back from the L.A. FANS-1 interview date) as well as 
any moves up until the time of the L.A. FANS-2 interview.  ArcGIS Geographic Information 
System (GIS) software (ESRI, Redlands, California, version 9.3) was used to map these 
residential addresses and derive latitude and longitude locations. The underlying street network 
used to geocode residential addresses was the ESRI StreetMapTM (series issue 2008, North 
America). In addition, Primary Caregivers were asked about each child’s school attendance, i.e., 
names, addresses and dates for all schools attended by the child. Reported school locations were 
geocoded using the same method as for residence locations. 
 Home and school location coordinates (latitude and longitude) were overlaid with the 
LUR and kriged O3 and PM2.5 surfaces created as described above and the following 
concentration values extracted for each location: NO, NO2, NOx in ppb, O3 in ppm and PM2.5 in 
µg/m3. (Note that O3 values in ppm were converted to ppb the for health analyses). Information 
on time spent in each home and school was then used to create the following weighted annual 
averages: current home, homes during the previous 12 months (i.e., weighting annual averages 
extracted for each home by the time spent in each home during this period), homes during the 
previous 24 months, and homes during the previous 5 years.  For schools, it was assumed that a 
child, on average, spents 1,080 hours at school per year (180 days per year and 6 hours per day). 
 
L.A. FANS Health Outcome Assessment 
 Respiratory health in children was assessed in L.A. FANS Wave-2 via in-person 
interviews with Primary Caregivers (PCGs) and also using portable spirometers to measure lung 
function for respondents at least five years of age. Table 3 provides a list of the L.A. FANS 
Wave-2 respiratory health questions; these questions were based on the International Study of 
Asthma and Allergies in Childhood (ISAAC) questionnaire. Based on the responses to these 
questions, we performed logistic regressions to examine associations between the LUR air 
pollution metrics and the following dichotomous health outcomes: (1) doctor-diagnosed asthma 
(ever); (2) wheeze in the past 12 months; (3) wheeze with any night waking in the past 12 
months; (3) medication use for asthma or wheeze in the past 12 months; (4) sneezing or a runny 
or blocked nose apart from colds in the past 12 months; (5) more than 3 doctor-diagnosed ear 
infections in a year. There were too few subjects reporting wheeze severe enough to limit speech 
in the past 12 months for meaningful statistical analyses (n=18). 

As a part of the L.A. FANS-2 survey, child participants at least 5 years of age were given 
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lung function tests using portable spirometers in conjunction with the field interviews. The 
EasyOne Diagnostic Spirometer from ndd Medical Technologies (http://www.nddmed.com, 
Andover, MA) was selected for the L.A. FANS Wave-2 field work. The key features of this 
instrument that made it well suited for the study were: (1) it is small, portable, and requires 
minimal power (approximately 400 measurements can be completed with two AA alkaline 
batteries), (2) has the ability to record and store approximately 700 sessions of spirometric data 
in memory including full flow-volume curves, (3) includes quality control software and prompts 
to obtain acceptable and repeatable efforts, (4) has time and date stamping of all records, (5) 
allows easy transfer of specific flows and volumes to a personal computer database, (6) can be 
re-used to test multiple subjects with minimal cleaning, (6) allows easy calibration, and (7) 
complies with American Thoracic Society (ATS) criteria for spirometer performance. A recent 
evaluation by the Fresno Asthmatic Children’s Environment Study (FACES) study team 
indicated this spirometer accurately and reliably measures pulmonary function in children, 
relative to a “gold-standard” laboratory-style instrument.126 

Portable spirometers can measure a wide range of pulmonary function parameters, 
including peak expiratory flow rate (PEF), forced vital capacity (FVC), forced expiratory volume 
after 1 second (FEV1), forced expiratory mean flow between 25% and 75% of FVC (FEF25-75), 
and forced expiratory mean flow at 75% of FVC (FEF75).  This set of lung function parameters 
reflect conditions in both small and large airways and are more sensitive to changes in functional 
status in asthma.  Table 4 describes these spirometry measurements in greater detail. FVC is the 
maximum volume of air expelled during an expiration made as forcefully and completely as 
possible starting from full inspiration, while FEV1 is the volume of air delivered during the first 
second of the FVC maneuver (ATS, 1994). PEF, FEF25-75 and FEF75 are all flow measures and 
are considered markers of small airway function, converse to the volume measures that provide 
information on the larger, central airways.49,56 

As a part of the L.A. FANS-2 survey, trained field technicians collected spirometry 
measurements at the subjects’ homes.  Based on discussions with our collaborators from the 
Fresno Asthmatic Children’s Environment Study (FACES) and recommendations from CARB 
internal and external reviewers, additional training was conducted for L.A. FANS field 
interviewers to help increase the quality of lung function data collected for children (some of 
which were as young as 5 years). Specifically, a separate contract was established for Dr. 
Kathleen Mortimer and Mr. Lucas Carlton (UC Berkeley) to provide training workshops to the 
L.A. FANS interviewers. Dr. Mortimer and Mr. Carlton have extensive experience in using the 
EasyOne spirometer to assess lung function, especially in asthmatic children where these 
manuevers can be most difficult, based on their work on FACES. All field interviewers were 
required to attend at least one 6-hour training session. Appendix C provides a detailed summary 
of the L.A. FANS spirometry training. Appendix D provides the L.A. FANS-2 spirometry 
protocol used by the field interviewers. People with specific health conditions (mostly serious 
respiratory problems, or conditions that made completing the spirometry maneuvers physically 
difficult for the subject) were not asked to complete the spirometry procedure. Out of 1,287 total 
L.A. FANS-2 child respondents at least 5 years of age, a total of 1,070 (83%) subjects attempted 
the spirometry procedure. 

A detailed description of procedures used to collect spirometry measures are provided in 
the protocol in Appendix D. Briefly, the field technician demonstrated a sample spirometry 
maneuver by taking a deep breath and blowing through the tube until the EasyOne device 
indicated the end of test, or as long as possible, whichever occurred first.  Participants completed 

http://www.nddmed.com/�
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the spirometry maneuvers by placing nose clips on his/her nose, standing as straight as possible, 
taking a very deep breath, and blowing hard and fast through the mouth into the spirometry 
device.  They were instructed to keep blowing until the device beeped to indicate the end of the 
test, or until they could no longer keep blowing.  For each subject, the goal was to complete 3 
maneuvers that were considered acceptable by the EasyOne device, with a maximum of 8 
attempts.  Specifically, the EasyOne device evaluated each maneuver for acceptability based on 
the following 1994 ATS criteria:127 

• Back-extrapolated volume ≤150 ml or 5% of FVC, whichever is greater;  
• Time to peak flow ≤120 milliseconds; and 
• Expiration time ≥2 seconds or volume accumulation dropped below 100 ml per 

0.5 seconds. 
 
Subjects were prompted to continue to perform maneuvers until 3 acceptable and reproducible 
curves were achieved; reproducibility was defined per 1994 ATS criteria as:   

• Two largest FEV1 values within 200 ml; and 
• Two largest FVC values within 200 ml. 

 
The EasyOne device signaled completion of the test when: (1) there were 3 acceptable blows and 
the best 2 were reproducible within 200 ml if the person did 4 or fewer blows; or (2) there were 3 
acceptable blows and 2 were reproducible within 250 ml if the person did 5 or more blows; or (3) 
a maximum of 8 attempts was completed. The EasyOne device automatically stored the 3 best 
curves for each participant, i.e., the 3 curves with the highest sum of FEV1 and FVC, per ATS 
criteria.   

The spirometry data collected during the field interviews were then downloaded into 
computer databases for review and analysis. We performed a review of the acceptability of each 
spirometry curve assigned by the EasyOne device by visual inspection of each flow-volume 
curve. The EasyOne’s pre-programmed criteria are sometimes too strict for very young children 
since they cannot expel air long enough for the EasyOne device to register a manuever as a valid 
test.  Additionally, the EasyOne software may not detect all faulty curves that can be identified 
only through visual inspection of the hard copy tracings of the curves. This review and re-
grading of all the spirometry curves was completed by Mr. Lucas Carlton at UC Berkeley, under 
a separate subcontract (Number 05-311).  As mentioned previously, Mr. Carlton has specific 
experience evaluating spirometry data from children as part of the UC Berkeley Fresno 
Asthmatic Children’s Environment Study. A summary of Mr. Carlton’s review activities is 
provided in Appendix C. Briefly, the data from the EasyOne portable spirometers were 
downloaded into an MS Access database, and an electronic form was added so that the grades 
could be entered directly into the database. Mr. Carlton graded each curve to determine 
acceptability using the following criteria (some of which overlap with the 1994 ATS criteria):   

 
(1) The Back Extrapolated Volume must be ≤5% or 150mL, whichever is greater; 
(2) Time to Peak Flow must be ≤120 milliseconds; 
(3) No abrupt end to test; 
(4) FET must be ≥ 2 seconds; 
(5) Time/Volume curve must begin at origin (to ensure proper start of test); 
(6) Curve must show that subject exhaled using only one continuous blast of air; and 
(7) Curve must show no leaks or negative flow throughout test (i.e. no inhalation). 
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In our analyses, we examined all children with one or more acceptable curves per Mr. Carlton’s 
review. If the EasyOne software deemed a curve acceptable, but Mr. Carlton did not based on his 
curve review (mostly having to do with start of test problems), then the curve was not included. 
For children with two acceptable curves, we used the highest values to analyze FEV1 and FVC, 
while for PEF, FEF25-75, and FEF75 we used the value from the curve with the highest sum of 
FEV1+FVC per ATS guidelines.127 We also performed additional analyses only including 
subjects having 3 acceptable curves and 2 reproducible curves for FEV1 and FVC per 1994 ATS 
criteria; i.e., the 2 largest FEV1 and FVC values were within 200 ml, similar to other cross-
sectional studies of air pollution impacts on lung function in children.33,44  To analyze FEV1 and 
FVC, we used the highest values from the 3 best curves; for all other parameters (PEF, FEF25-75, 
FEF75) we used values from the curve with the highest sum of FEV1+FVC, again based on ATS 
criteria.  Overall, Mr. Carlton graded spirometry curves for over 3,000 participants, including 
both children and adults.  The large majority of these subjects (over 75%) were able to achieve 2 
or more acceptable spirometry curves, and over 78% of these met the ATS criteria for 
reproducibility.  Adults were most likely to achieve reproducible curves (over 63% were 
reproducible), and results were similar among teenagers (59%) and preteens (56%).  However, 
children <8 years of age were far less likely to achieve reproducible curves (42%), partly due to 
many of the children being unable to obtain a minimum of 2 acceptable curves. 
 
Confounder/Effect Measure Modifier Assessment 
Individual Level 

A number of individual, family and neighborhood-level characteristics were considered 
for inclusion in our models. Individual-level risk factors considered were child’s race/ethnicity, 
age, gender, health insurance status, and whether the child had a usual source of sick care. 
Information on these variables was collected as part of the L.A. FANS-2 survey. Objective 
physiological health measures taken as part of L.A. FANS-2 included height and weight for 
children age two years and older (children two years of age had to be able to stand unassisted). 
These data were used to estimate body mass index (BMI) for each child. We defined as 
overweight children with BMI-for-age values at or above the 85th percentile based on 2000 U.S. 
Centers for Disease Control BMI-for-age charts for boys and girls (www.cdc.gov/growthcharts/).  

  
Family Level 

At the family level, we examined the following measures of socioeconomic status (SES): 
family income, homeowner status (yes/no), and primary caregiver (PCG) education (years). We 
also considered PCG birthplace (U.S. versus outside the U.S.) and current marital status as 
indirect markers of SES and access to health care. Information on these variables was collected 
via in-person interviews with Primary Caregivers (PCGs). If the PCG did not provide 
information on family income or homeowner status, but a separate Randomly Selected Adult 
(RSA) did provide this information, then the RSA’s response was used in our analyses. 

We also evaluated a number of family-level neighborhood perception variables, where 
the Randomly Selected Adult participant from each family was asked to rate their overall 
neighborhood satisfaction and opinion of neighborhood safety, cohesion and support (see Table 
12 in Results section for a listing of these variables). The overall neighborhood cohesion score 
was based on the average of responses to a series of questions asking whether the neighborhood 
was close-knit, whether neighbors get along, are willing to help each other, share the same 
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values, can be trusted, and whether adults look out for and discipline children in the 
neighborhood as needed (see Table 12 for more details). Participants were also asked about the 
number of other adults they recognize in their neighborhood. The neighborhood support score 
was based on the average of responses (1=often, 2=sometimes, 3=rarely, 4=never) to the 
following questions: (a) How often do neighbors do favors for each other; (b) How often do 
neighbors watch each others’ property; and (c) How often do neighbors ask for advice. Adults 
were also asked about the number of friends and relatives living in the neighborhood, group 
participation in the previous 12 months, and number of conversations with neighbors. For these 
questions, "neighborhood" was defined to respondents as “both the block or street you live on 
and several blocks or streets in each direction”. Based on the design of the L.A. FANS survey, 
these perception questions were answered by the PCG for 53% of the families, by the PCG’s 
spouse or partner for 24% of the families and by another adult in the household for 7% of the 
families. Approximately 16% of the children are missing data for these neighborhood perception 
questions. In L.A. FANS-2 a household may not have an RSA interviewed (and thus have 
missing data on neighborhood perception) if the panel RSA (i.e., the adult interviewed during 
Wave 1) moved away from the panel Randomly Selected Child (RSC) and the RSC’s sibling 
(SIB) and thus is no longer in the household.  A new RSA was selected only in a random subset 
of panel households. Only those adults who did not live in the L.A. FANS-1 tract of the panel 
household were eligible to be selected as new adult respondents. 

As part of L.A. FANS-2, a series of questions was added to assess potential exposures to 
indoor allergens and indoor air pollution sources. PCGs were asked whether anyone currently 
living in the house smoked cigarettes, cigars or pipes, and if yes, the number of people who 
smoke everyday inside the home. The PCG was also asked if she currently smoked. Since based 
on the examination of the data, it was apparent that sometimes the PCG did not include herself 
when reporting current smokers in the home (only other smokers), we constructed a separate 
household smoking variable which indicated whether the PCG reported current smokers in the 
home or that s/he was a current smoker. Respondents were asked whether they currently had a 
gas appliance in their home (stove, range or oven), and if yes, how these devices were lit (i.e., 
electronic ignition with no pilot light, match lighting with no pilot light and continuous pilot 
light). Respondents were asked whether they had pests in their home in the last 12 months (rats, 
mice, cockroaches, ants, spiders or termites) or no problems with pests during this time. We also 
evaluated whether respondents reported cockroaches in the home separately, as a surrogate 
measure of potential exposure to these specific allergens. To assess potential exposure to molds, 
respondents were asked whether there was mold or mildew on the walls, ceilings or floors of the 
home or a moldy or musty smell in the home during the past 12 months. Respondents were also 
asked to identify furry pets (dog, cat, etc.) that come inside the house or apartment at least part of 
the time. 

Finally, PCGs were asked whether each child’s biological mother and father had asthma. 
 
Neighborhood Level 

At the neighborhood level, we constructed a census tract-level disadvantage score based 
on US Census 2000 data similar to Cohen et al. (2006). This continuous index of neighborhood 
socioeconomic conditions represents the average of four measures for each tract: percent poor 
families, percent households on public assistance, percent female-headed families with children 
under 18 years of age, and percent male unemployment. Other census-based measures included 
the percent of the tract population that lived in the same house 5 years ago (as a measure of 
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neighborhood stability) and whether there was a dominant racial/ethnic group in the tract (as a 
measure of neighborhood homogeneity).128 Finally, we averaged the neighborhood cohesion 
scores and opinions of neighborhood safety across all L.A. FANS adults living in the same 
census tract as additional measures of neighborhood quality. 
 
Statistical Analyses 
Respiratory Health Endpoints 

We used logistic regression to evaluate associations between the LUR and kriged air 
pollution estimates and odds of the following outcomes: (1) doctor-diagnosed asthma (ever); (2) 
wheeze in the past 12 months; (3) wheeze with any night waking in the past 12 months; (3) 
medication use for asthma or wheeze in the past 12 months; (4) sneezing or a runny or blocked 
nose apart from colds in the past 12 months; (5) more than 3 doctor-diagnosed ear infections in a 
year. There were too few subjects reporting wheeze severe enough to limit speech in the past 12 
months for meaningful statistical analyses (n=18). For the outcomes wheeze in the past 12 
months, wheeze with any night waking in the past 12 months, medication use for asthma or 
wheeze in the past 12 months, and sneezing or runny or blocked nose apart from colds in the past 
12 months, our main exposure of interest was annual average NO, NO2 and NOx as estimated by 
the LUR model, accounting for all homes lived in during this time period. However, as a 
sensitivity analysis, we also examined associations between averages based on the current home 
(since this allowed for the largest sample size), 2 years prior to interview date and 5 years prior 
to interview date (the latter two metrics to examine potential importance of longer-term 
exposures on the outcomes). We also examined associations with air pollution metrics taking 
estimated concentrations at school locations into account. For doctor-diagnosed asthma and ear 
infections, our main exposure of interest was 5 years prior to the interview date, as this was the 
longest weighted average we could generate for the majority of subjects. Unfortunately, the 
number of children for whom lifetime residential histories became available was too small for 
meaningful statistical analyses of associations between lifetime air pollution exposures and these 
health outcomes. We examined crude associations between each outcome and each pollutant 
(NO, NO2, and NOx) separately, as these exposure metrics were highly correlated (r~0.8-0.9). 
We examined changes in the odds of each outcome per interquartile increase in each pollutant. 
For example, we fit the following logit-linear model for the binary outcome “wheeze in the past 
12 months” (noted here as A, where A=1 if a child was reported to have wheezing): 

logit(A=1| NO)= β0+ β1 (NO)  
Here exp(β1) represents the odds ratio for wheeze in the past 12 months corresponding to 

an IQR change in average NO 12 months prior to the interview date (in ppb).  Logistic 
regressions were conducted using SAS statistical software (version 9.1).  

Second, we used multivariate logistic regression analyses to quantify associations 
between LUR exposure metrics and outcomes while controlling for potential confounders. For 
example, we fit the following logit-linear model again for “wheeze in the past 12 months” as a 
function of average NO 12 months prior to the interview, considering age and gender (gender=1 
if the child is a boy, 0 if the child is a girl) as potential confounders: 

logit(A=1| NO)= β0+ β1 (NO) + β4 (age)i + β5 (gender)i   
 

We evaluated changes in point estimates and 95% confidence intervals (CIs) for air 
pollution association measures (odds ratios) when entering each individual, family and 
neighborhood level risk factor discussed above into the models. Variables included in final 
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models were determined based on subject-matter criteria, correlations between variables, and 
impact on estimates (i.e., whether their inclusion changed associations estimates by at least 
5%).129 Each final model included child’s age, sex, race/ethnicity, and family income. Additional 
variables were included depending on health endpoint (see Tables 20-25 in the Results Section). 
We also examined changes in effect estimates for the LUR exposure metrics when entering the 
peak O3 exposure metrics into models. Finally, a two-level model with a random intercept for 
family was used to account for non-independence of siblings (i.e., clustering at the family-level). 
 We explored differences in effect estimates when stratifying on the neighborhood quality 
variables, specifically census tract-level measures of neighborhood cohesion, safety, and 
economic disadvantage, as well as percentages of residents living in the same home as five years 
ago. Not enough subjects resided in tracts that were predominately Latino or White for 
meaningful statistical analyses stratified on this variable. Overall statistical power for all 
stratified analyses was limited due to the relatively small overall sample size available to us. 
Originally, the L.A. FANS-2 study planned to enroll approximately 4,000 children (all of the 
L.A. FANS-1 children plus a sample of new entrants into each neighborhood). Despite extending 
data collection by approximately 1.5 years after the originally scheduled enrollment period, the 
total number of L.A. FANS-2 child participants reached only about 35% of the originally 
planned enrollment number. This issue is addressed further in the Discussion section. 
 
Lung Function 

Linear regression was used to estimate associations between lung function measures and 
annual average levels of NO, NO2, and NOx estimated by LUR models and O3 and PM2.5 
estimated by kriging. The specific lung function measures evaluated were: peak expiratory flow 
rate (PEF), forced vital capacity (FVC), forced expiratory volume after 1 second (FEV1), forced 
expiratory mean flow between 25% and 75% of FVC (FEF25-75), and forced expiratory mean 
flow at 75% of FVC (FEF75). When more than one acceptable curve was available, the largest 
values for FVC and FEV1 were selected for analysis, as explained previously. For the flow 
measures, values were obtained from the curve with the highest sum of FVC and FEV1. We 
examined several different pollutant averaging periods in our models: annual average pollutant 
values based on the current home only, and considering (i.e., weighting for) all homes lived in 
for the past 12 months, 24 months and 5 years prior to the interview date. We also examined 
effects taking concentrations at school locations into account. We examined crude associations 
between each outcome and each pollutant (NO, NO2, and NOx) separately, as these exposure 
metrics were highly correlated. For example, we fit the following model for the continuous 
outcome PEF as a function of average NO 12 months prior to the interview: 

PEFi= β0+ β1 (NO)i +εi   εi~N(0,σ2) 
where i is the index for the individual and εi represents individual-level variation.   

Similar to the multivariate logistic regression analyses, multivariate linear regression was 
used to quantify associations between LUR exposure metrics and outcomes while controlling for 
potential confounders. To illustrate, we fit the following model for the continuous outcome PEF 
as a function of average NO over the 12 months prior to interview, considering age and gender 
(gender=1 if the child is a boy, 0 if the child is a girl) as potential confounders: 

PEFi= β0+ β1 (NO)i +β2 (age)i + β3 (gender)i + εi   εi~N(0,σ2) 
 

We evaluated changes in betas and 95% confidence intervals (CIs) for air pollution metrics as 
well as changes in model fit (based on adjusted R2, Mallow’s Cp and Akaike Information 
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Criterion (AIC) values130 when entering each individual, family and neighborhood level risk 
factor discussed above into the models. Since initial results indicated differences in associations 
between air pollution and lung function by gender, we conducted analyses for boys and girls 
separately. We examined models including height, weight, and BMI using several different 
parameterizations, and selected height, height2, and being overweight (yes/no) for our final 
models for boys and height, height2, weight, weight2, and being overweight (yes/no) for our final 
models for girls. Other variables included in final models were selected based on subject-matter 
criteria, correlations between variables, changes in air pollution parameter estimates, and model 
fit (see Tables 28-30 in Results sections for listing of final adjustment variables). Cook’s 
distance114 as well as DFFITS and leverage statistics130 were used to assess the impact of each 
observation on the estimated effects and some outliers were excluded from analyses. Finally, a 
two-level model with a random intercept for family was used to account for non-independence of 
siblings (i.e., clustering at the family-level). 
 We explored differences in effect estimates when stratifying on the neighborhood quality 
variables, specifically census tract-level measures of neighborhood cohesion, safety, and 
economic disadvantage, as well as percentages of residents in neighborhood living in the same 
home as five years ago. Not enough subjects resided in tracts that were predominately Latino or 
White for meaningful statistical analyses stratified on this variable. Overall statistical power for 
these stratified analyses was limited due to the small sample size available to us. 
 
IV. RESULTS   
LUR and Kriging Modeling 
NOx measurements 

The sampler detection limits, calculated as three times the standard deviation of the field 
blank measures during each season, were <0.14 μg for NO2 and <0.76 μg for NOx.  Our duplicate 
measurements indicated that the average coefficient of variation was low (3.3% for NO2 and 
2.1% for NOx).  Measured pollutant levels ranged from 5.3 ppb to 42.7 ppb for NO2 (median = 
27.3 ppb) and from 8.1 ppb to 157.0 ppb for NOx (median = 60.9 ppb), after correcting for blank 
concentrations (Table 5). Annual means measured by 14 monitors in the Southern California Air 
Quality Management District regulatory network showed strong relationships with the campaign-
specific means. We calculated the intraclass correlation coefficient (ICC) using a generalized 
linear model with compound symmetry covariance, clustered by site, and found high correlations 
between our 2, 2-week average measurements and annual averages based on measurements at the 
government monitoring stations (ICC = 0.93 for NO, 0.87 for NO2, and 0.96 for NOx). 
Comparison of February 2007 measurements made by Ogawa samplers collocated at government 
sites (which are chemiluminescence samplers) produced slopes of 0.82 (R2 = 0.91), 0.72 (R2 = 
0.64) and 0.81 (R2 = 0.92) for NO and NO2 and NOx, respectively. The relationships between 
collocated measurements in September 2006 were also strong, with slopes of 1.16 (R2 = 0.82), 
0.82 (R2 = 0.84) and 1.01 (R2 = 0.89) for NO, NO2 and NOx, respectively. To compare the 
duplicate measurements for both seasons combined, we calculated the ICC as above, clustering 
by site and season, and found high correlations for all three pollutants of interest (ICC = 0.97 for 
NO, 0.92 for NO2, and 0.98 for NOx). These results suggest that our short-term monitoring 
captured the longer term spatial patterns of exposure well in the Los Angeles area.  
 
LUR Distance decay curves 

Because distance decay curves for NO, NO2 and NOx showed an upward trend for all 
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traffic estimates at the pre-specified 5000 m buffer distance, we extended the maximum buffer 
distance to 15 km to identify the optimal distance of influence from traffic sources. Among the 
four types of traffic density estimates we considered, traffic measures imputed from TeleAtlas 
Dynamap data were found to have the highest correlations with measured NO, NO2 and NOx 
concentrations and were therefore used in the ADDRESS model selection process. As illustrated 
in the distance decay curves presented in Figure 6a-d, correlations between VMT and traffic-
related air pollution concentrations increased steeply out to 10 km and reached a peak around 11 
km, especially for NOx. Highway vehicle density within 11 km alone explained 46.6% of the 
model variance for NOx. After a buffer distance of 11 km, correlations trended to slope 
downward. The explanatory power of highway vehicle density within 11 km suggests the 
increasing contribution from background NOx transport within that distance, a finding consistent 
with earlier integrated meteorological models calibrated for L.A.131 Since previous studies 
identified the maximum distance of influence from a roadway to be 1500 m,29 we created 
semivariograms of NO and NO2 concentrations (Figure 7) using the 201 monitoring site 
measurements to identify distances of spatial dependency for the two pollutants. Based on these 
analyses, the distance of spatial dependency for NO was about 11000 m, while NO2 
concentrations experienced an even slower decrease, reaching background levels at about 20000 
m. For local effects, we saw a sharp drop of influence of major road from near source (100 m) to 
a distance of 500-700 m; however, for highways, highways and major roads combined, and all 
road categories, we saw a sharp increase of influence from near source to a 500 m buffer distance  
(not shown on figures). 

Compared to all other variables we explored, distance to truck routes (not shown on 
figures) correlated most strongly with NO, NO2 and NOx measures (correlation coefficient = 
0.57-0.67), and explained 44.2% of the model variance for NO2. Remote sensing derived 
greenness (Figures 6b-6d) also correlated highly with the three pollutant concentrations and was 
seen as a much better predictor than open space, even though soil brightness correlations 
(Figures 6b-6d) were lower than those for greenness. The greenness and soil brightness surfaces 
in Figures 8a and 8b also demonstrate that greenness was a better predictor of road networks and 
other off-road traffic-related land uses (e.g., parking lots). Truck route slope gradient explained 
up to 9% of NOx concentration variance.   

Based on the distance decay correlation curves, we found that influence from the majority 
of the variables analyzed had a spatial extent greater than 3000 m, especially for traffic related 
variables. This is inconsistent with previous research findings from medium- or smaller-size 
urban areas (e.g., traffic influence < 1500 m). Using the highway network in L.A. as an example, 
Figures 9 and 10 show the distance decay of NO and NO2 concentrations with increasing 
distance from highways (the bar charts show average measured pollutant concentrations within a 
certain distance interval, i.e., 100, 200, 500 and 1000 m). If we use a 50% reduction in 
concentration as a standard for spatial extent identification, then the spatial extents for NO and 
NO2 would be 3000 and 5000 m from highways, respectively. If 10% is used as a threshold, then 
the spatial extent for both pollutants would be greater than 10000 m.  
 
ADDRESS modeling results 

Before we modeled the NO, NO2 and NOx concentrations, we chose 16 monitoring sites 
randomly for cross validation, four sites from each of four quartile groups of NOx concentrations. 
The remaining 167 sites were used in ADDRESS to model annual concentrations of NO, NO2 
and NOx, based on the mean concentrations from the two measurement periods. The final 
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Figure 6a-6d. Distance decay curves of correlations between selected spatial covariates and measured air pollution concentrations 
(6a for traffic volumes - total vehicle miles traveled, 6b for NO, 6c for NO2 and 6d for NOx
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Figure 7. Semivariograms of NO and NO2 based on measurements from the 201 monitoring sites
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Figure 9. Distance decay of NO concentrations further away from highways (A1 and A2) based on 201 monitoring sites in the 
LA metropolitan area 
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Figure 10. Distance decay of NO2 concentrations further away from highways (A1 and A2) based on 201 monitoring sites in 
the LA metropolitan area
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optimized models explained 81, 86 and 85% model variance for NO, NO2 and NOx, respectively. 
All the chosen spatial covariates were statistically significant at a 0.05 level with accepted signs 
of correlation. The average Variance Inflation Factor (VIF) for NO, NO2 and NOx were 1.25, 
1.31 and 1.22, respectively, with the maximum VIF being 1.56, demonstrating a lack of 
significant collinearity between the chosen spatial covariates. The prediction scatter plots 
displayed in Figure 11a (for NO), 11b (NO2) and 11c (NOx) further demonstrate that the 
prediction models were not influenced by significant outliers and the model prediction residuals 
were normally distributed.  

The maximum Cook's distance for NO, NO2 and NOx was 0.10, 0.36 and 0.23, respectively, 
also confirming the absence of influential outliers in each model. After selecting these 
parsimonious models, we tested for spatial autocorrelation based on first and second order 
Thiessen polygon connectivity matrices with the Moran’s I. There was significant 
autocorrelation with the first order matrix in all models, but not in the second order tests (with I 
being equal to -0.008 (p = 0.48), -0.023 (p = 0.35) and 0.031 (p = 0.18) for NO, NO2 and NOx 
model residuals). The ADDRESS models with an extra cluster parameter and the GEE models 
(Table 6 second and third columns) showed similar results to corresponding ADDRESS models 
that did not incorporate adjustment for clustering, except some small changes to the standard 
errors.  

In our cross-validation models (Figure 11d, 11e and 11f), the 16 randomly picked samples 
explained 91, 87 and 92% of the model variances for NO, NO2 and NOx, respectively (Table 6). 
The Chow test showed that there was no significant difference between the models with the full 
and half dataset for NO, NO2 and NOx, indicating model stability to subset selection. 
The final prediction surfaces for NO, NO2 and NOx are displayed in Figures 12a-12d. Figure 12a 
(for NO) and 12d (for NOx) show similar concentration patterns, i.e., higher NO and NOx levels 
near to emission sources such as highways and industrial land use, while the predicted NO2 
concentration surface (Figure 12b) is smoother overall, with highest concentrations in the 
northern and eastern parts of the city, and lower concentrations in the western areas. The NO2 
gradients reflect importance of the onshore sea breeze and secondary formation of NO2 
associated with inland air transportation processes in the LA Basin.  

To test whether removing the influence from the extended 11 km buffer distance would 
maintain similar prediction powers, we developed another set of models. Specifically, these 
models were re-run with all the spatial variables as the final "optimized" models with 
corresponding buffer distances except the TeleAtlas traffic counts on highway and major roads 
within 11000 m (Figure 12c). The prediction powers for NO, NO2 and NOx in these new models 
that ignored traffic within a buffer distance greater than 5000 m were 0.64, 0.78 and 0.68, 
respectively, i.e. comparable to previously published LUR models but much lower than the 
optimized models developed here. Thus, while previous LUR models successfully predicted 
local sources of air pollution, they paid little attention to the influence of background sources 
(e.g., at buffer distances >5 km), that we found important in a mega city like L.A. However, we 
also extracted exposure estimates from the LUR models excluding traffic at 11 km for LA FANS 
participants as a sensitivity analysis. Although incorporating the influence of traffic from 
roadways at distances up to 11 km away improved the prediction ability for models of NO, NOx 
and NO2, particle measurement data collected in L.A. suggest concentrations of ultrafine 
particles (UF, <0.1 microns in aerodynamic diameter) drop off rapidly at approximately 150 
meters from major roadways reaching background concentrations at approximately 300 
meters.8,9 Thus, utilizing models which only incorporate the influence of traffic within smaller 
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Figure 11. Model predictions of natural log-transformed NO, NO2 and NOx (11a,11b and 11c) and corresponding cross-
validation results (11d, 11e and 11f) 
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Figure 12. Model prediction surfaces of NO (12a), NO2 (12b, 12c) and NOx (12d) through an ADDRESS selection process (12b with 
and 12c without buffer distance within 11 km)
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Table 6. Model prediction results using ADDRESS model, ADDRESS model with clustering considered, and GEE model for NO, NO2 and NOx. 
ADDRESS model* ADDRESS model with clustering** GEE model*** Pollutant Variable 

Coef. Std. Err. t P>|t| VIF* Coef. Std. Err. t P>|t| Coef. Std. Err. t P>|t| 
Intercept -2.6407240 0.654861 -4.03 0.000  -2.6407240 0.792661 -3.33 0.001 -2.6407240 0.634952 -4.16 0.000 
TeleAtlas traffic highway and major 
roads (11000 m) 0.00000003 0.000000 11.93 0.000 1.35 0.00000003 0.000000 10.58 0.000 0.00000003 0.000000 12.30 0.000 
TeleAtlas traffic all roads (400 m) 0.00000210 0.000000 6.75 0.000 1.27 0.00000210 0.000000 5.91 0.000 0.00000210 0.000000 6.96 0.000 
Distance to truck routes (m) -0.00003880 0.000013 -3.06 0.003 1.49 -0.00003880 0.000014 -2.87 0.005 -0.00003880 0.000012 -3.15 0.002 
Major road (100 m) 0.00053750 0.000143 3.77 0.000 1.13 0.00053750 0.000178 3.01 0.004 0.00053750 0.000138 3.89 0.000 
Industrial (2700 m) 0.00036130 0.000084 4.29 0.000 1.20 0.00036130 0.000089 4.08 0.000 0.00036130 0.000082 4.42 0.000 
Commercial (1200 m) 0.00277730 0.000533 5.21 0.000 1.19 0.00277730 0.000514 5.40 0.000 0.00277730 0.000517 5.37 0.000 
Soil brightness (700 m) 0.01005310 0.001727 5.82 0.000 1.32 0.01005310 0.001935 5.20 0.000 0.01005310 0.001674 6.00 0.000 
X coordinate 0.00000660 0.000001 5.76 0.000 1.09 0.00000660 0.000001 4.80 0.000 0.00000660 0.000001 5.94 0.000 
Open (100 m) -0.1542625 0.049998 -3.09 0.002 1.20 -0.1542625 0.047074 -3.28 0.002 -0.1542625 0.048478 -3.18 0.001 

6a. 
NO 

R2 (p) | R2 (p)**** 0.81 (< 0.0001) | 0.92 (< 0.0001) 0.81 (< 0.0001)         
Intercept -11.282530 2.443303 -4.62 0.000  -11.282530 3.725334 -3.03 0.003 -11.2825300 2.369021 -4.76 0.000 
TeleAtlas traffic highway and major 
roads (11000 m) 0.00000001 0.000000 9.72 0.000 1.44 0.00000001 0.000000 7.23 0.000 0.00000001 0.000000 10.03 0.000 
TeleAtlas traffic all roads (400 m) 0.00000072 0.000000 5.26 0.000 1.28 0.00000072 0.000000 4.04 0.000 0.00000072 0.000000 5.43 0.000 
Distance to truck routes (m) -0.0000439 0.000006 -7.90 0.000 1.49 -0.00004390 0.000014 -3.04 0.003 -0.00004390 0.000005 -8.15 0.000 
Major road (100) 0.00018990 0.000063 3.01 0.003 1.15 0.00018990 0.000070 2.72 0.008 0.00018990 0.000061 3.11 0.002 
Local road (1400) 0.00000234 0.000001 2.82 0.005 1.56 0.00000234 0.000001 2.73 0.008 0.00000234 0.000001 2.91 0.004 
Industrial (1700 m) 0.00059240 0.000096 6.16 0.000 1.36 0.00059240 0.000145 4.10 0.000 0.00059240 0.000093 6.35 0.000 
Commercial (1000 m) 0.00261960 0.000308 8.50 0.000 1.16 0.00261960 0.000376 6.96 0.000 0.00261960 0.000299 8.77 0.000 
X coordinate (m) 0.00000515 0.000001 10.11 0.000 1.12 0.00000515 0.000001 7.38 0.000 0.00000515 0.000000 10.43 0.000 
Y coordinate (m) 0.00000316 0.000001 4.98 0.000 1.20 0.00000316 0.000001 3.26 0.002 0.00000316 0.000001 5.14 0.000 

6b.  
NO2 

R2 (p) | R2 (p) 0.86 (< 0.0001) | 0.87 (< 0.0001) 0.86 (< 0.0001)         
Intercept -0.0590325 0.429163 -0.14 0.891   -0.0590325 0.543035 -0.11 0.914 -0.05903250 0.417438 -0.14 0.888 
TeleAtlas traffic highway and major 
roads (11000 m) 0.00000002 0.000000 13.13 0.000 1.30 0.00000002 0.000000 10.83 0.000 0.00000002 0.000000 13.5 0.000 
TeleAtlas traffic all roads (400 m) 0.00000144 0.000000 7.11 0.000 1.27 0.00000144 0.000000 5.20 0.000 0.00000144 0.000000 7.31 0.000 
TeleAtlas traffic major road (100 m) 0.00002710 0.000007 3.92 0.000 1.14 0.00002710 0.000008 3.22 0.002 0.00002710 0.000007 4.03 0.000 
Distance to truck routes (m) -0.0000450 0.000008 -5.47 0.000 1.47 -0.0000450 0.000011 -3.94 0.000 -0.0000450 0.000008 -5.63 0.000 
Industrial (2700 m) 0.00029010 0.000054 5.38 0.000 1.16 0.00029010 0.000070 4.15 0.000 0.00029010 0.000053 5.53 0.000 
Commercial (1000 m) 0.00328070 0.000450 7.29 0.000 1.12 0.00328070 0.000488 6.72 0.000 0.00328070 0.000438 7.49 0.000 
Soil brightness (1700 m) 0.00442720 0.001104 4.01 0.000 1.19 0.00442720 0.001500 2.95 0.004 0.00442720 0.001074 4.12 0.000 
X coordinate (m) 0.00000572 0.000001 7.62 0.000 1.10 0.00000572 0.000001 6.67 0.000 0.00000572 0.000001 7.83 0.000 

6c.  
NOx 

R2 (p) | R2 (p) 0.85 (< 0.0001) | 0.92 (< 0.0001) 0.85 (< 0.0001)         
* ADDRESS model: An optimized distance decay model selection strategy for our land use regression models. VIF = variance inflation factor. ** For clustering analysis, 
observations were grouped using census tract. We assumed that measurements from multiple sites within a census tract might be correlated but, across census tracts, they were 
uncorrelated.*** GEE model: Generalized estimation equation model to analyze correlated data within census tracts.**** R2 (p) | R2 (p): the left side part is for model prediction 
power and right side for cross-validation result. 
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buffer distances may provide a better marker of exposure to ultrafine particles, even though such 
models are less predictive of NO, NO2 and NOx specifically. Use of exposure predictions from 
models including long-range and short-range traffic impacts (i.e., the “optimized” models) and 
including only shorter-range traffic impacts (i.e., the “more local traffic” models) may therefore 
provide further clues about the importance of different traffic components to respiratory health.    

Most previous land use regression models29,132 have included population density as a 
predictor. However, in our modeling process, population density was not included for all three 
prediction models because of the high VIFs (Variance Inflation Factor >2). Our sensitivity 
analyses demonstrated that if population density was added, the model prediction power 
increased only by 0.50%, 1.28% and 0.71%, respectively, for NO, NO2 and NOx; thus, omitting 
population density from our LUR did not substantially decrease the predictive power of our 
models. 
 
O3 and PM2.5 Kriging Results 

Figures 13-15 illustrate the kriged PM2.5 and O3 surfaces for the L.A. region. About 50% 
of the modeled PM2.5 surface has errors that are less than 15% of the monitored values, while 
67% of the surface lies within 20% of the monitored values. For the most part, absolute standard 
errors in PM2.5 estimates for the densely populated areas of the L.A. FANS study are less than 3 
μg/m3. For O3, actual measured values within the modeled study area range from 0.050 ppm to 
0.138 ppm with a mean of 0.095 ppm. The average standard error of the modeled values 
compared to actual values is 0.012 ppm.   
 

 
Figure 13. PM2.5 surface through kriging for the LA Basin. 
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Figure 14. O3 ordinary kriging surface for the LA Basin 
 

 

   
Figure 15. O3 ordinary kriging surface for the LA Basin (close up of urban core area)
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Exposure Estimates for L.A. FANS Participants 
 For the 1,387 children for whom health and covariate data were collected as part of L.A. 
FANS-2, residential information (addresses and start and end dates) was obtained for 1,685 
homes. Of these homes, 1,569 (93.1%) were successfully geocoded. Reasons for unsuccessful 
geocoding of homes include errors in or missing address data, inability to match reported address 
to the street map used for geocoding, or residence locations outside of California. Of 1,266 
children who had started school, for 1,253 (99%) we were able to successfully geocode current 
school locations, however, the percent successfully geocoded declined to approximately 95% 
when considering schools attend 1 and 2 years prior to interview and by approximately 75% 
when considering schools attended 5 years prior to interview. Tables 7 and 8 provide a 
breakdown of the number of child respondents with available residential and school air pollution 
exposure metrics by exposure period, respectively. Table 9 provides information on the 
distribution of and correlations between residential air pollution metrics for all child respondents 
for whom a questionnaire was completed (n=1,387). We present values for the 12-month prior to 
interview averages; distributions and correlations for the other time periods considered were very 
similar. The final, optimized model NO, NO2 and NOx exposure estimates were strongly 
positively correlated (r~0.9 or greater). The NO, NO2 and NOx values from the “more local 
traffic” model were also strongly positively correlated with each other and with the full model 
values, with the lowest correlations being estimated between the local traffic NO2 and full model 
NO (r=0.75) and NOx (r=0.83) values. Thus, we consider these three pollutants as markers of the 
correlated suite of pollutants in traffic exhaust.  Ozone levels were moderately negatively 
correlated with LUR values for NO and NOx (r~-0.3-0.4) and only marginally negatively 
associated with LUR NO2 values (r~-0.18 and -0.08 for the full and local traffic models, 
respectively). Exposure estimates for PM2.5 were positively correlated with the full model 
estimates for NO (r=0.51), NO2 (r=0.68) and NOx (r=0.59), but less correlated with the local 
traffic model NO (r=0.37) and NOx (0.44) values. The stronger correlations between PM2.5 and 
full model estimates for NO and NOx (versus the more local traffic values) and with NO2 overall, 
suggest the importance of both local and background contributions to PM2.5 levels in the basin. 
Ozone and PM2.5 exposure values were moderately negatively correlated (r~-0.4). Distributions 
and correlations between air pollution metrics for the 890 children with at least one acceptable 
spirometry curve were very similar to those for all child respondents (Table 10). Ozone was 
slightly more negatively correlated with the other exposure metrics in this group. The 395 
children with 3 acceptable and reproducible spirometry curves had slightly lower interquartile 
ranges for the LUR pollution metrics (Table 11), but a greater interquartile range in O3 exposure 
estimates, indicating a greater spread in the distribution of values for this pollutant for these 
children. Positive correlations between LUR and PM2.5 metrics were slightly lower, while 
negative correlations between O3 and these metrics were similar to those for the 890 children 
with 1 acceptable curve and slightly stronger compared to all children. Correlations between 
residential pollution exposure metrics and air pollution exposure metrics taking into account 
school locations (home and school locations taken together and weighting for the time spent at 
school and at home) were greater than 0.9 across all pollutants and time periods (results not 
shown).  
 
Characteristics of L.A. FAN-2 Study Population 

A total of 939 families with children were interviewed as part of L.A. FANS-2; parents in 
these households completed questionnaires regarding 1,387 children. Of these children, 1,091  
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Table 7. Description of Available Residential Air Pollution Estimates by Exposure Period for n=1,387 Children included in L.A. 
FANS-2 
Air Pollution Averaging period No. (%) of subjects 

with NO, NO2, NOx 
and O3 values 

No. (%) of subjects 
with NO, NO2, NOx, 
O3 and PM2.5 values 

No. of subjects with LUR 
or O3 values missing for 

one or more homes1 

No. of additional subjects 
missing PM2.5 values for 

one or more homes2 
Current home 1378 (99%) 1364 (98%) 9 14 
12 months prior to interview 1311 (95%) 1301 (94%) 76 10 
24 months prior to interview 1288 (93%) 1278 (92%) 99 10 
5 years prior to interview 1223 (88%) 1213 (88%) 164 10 
(1) Subjects are missing data because: (a) one or more homes not geocoded and/or (b) homes dates (i.e., dates in each home) do not span this period or are missing data 
and/or (c) one or more homes fell outside the modeling domain.  
(2) These are homes were successfully geocoded, but fell outside the modeling domain for the PM2.5 exposure surface which covered a slightly different area than the 
LUR and O3 modeling domains. 
 
Table 8. Description of Available School Air Pollution Estimates by Exposure Period for n=1,387 Children included in L.A. FANS-2 
Air Pollution Averaging period No.  (%) of subjects 

with NO, NO2, NOx 
and O3 values1 

No.  (%) of subjects 
with NO, NO2, NOx, 
O3 and PM2.5 values1 

No. of subjects with LUR 
or O3 values missing for 

one or more schools1 

No. of additional subjects 
missing PM2.5 values for 

one or more schools2 
Current school 1253 (99%) 1237 (98%) 13 16 
12 months prior to interview 1220 (96%) 1206 (95%) 46 14 
24 months prior to interview 1180 (93%) 1170 (92%) 86 10 
5 years prior to interview 912 (72%) 903 (71%) 354 9 
(1) Percentages are based on a total of 1,266 children reported as having started school. Subjects are missing data because: (a) one or more schools not geocoded and/or 
(b) school dates (i.e., dates in each school) do not span this period or are missing data and/or (c) one or more schools fell outside the modeling domain. 
(2) These schools were successfully geocoded, but fell outside the modeling domain for the PM2.5 exposure surface which covered a slightly different area than the LUR 
and O3 modeling domains. 
 
Table 9. Pollutant Disributions and Pearson Correlation Coefficients for LUR, O3 and PM2.5 Annual Averages (12 months prior to 
interview) for n=1,387 Children with Questionnaire Data 

Pearson Correlation Coefficients Pollutant Median (range) IQR 
NO NO2 NOx NO-LT2 NO2-LT NOx-LT O3 

NO (ppb) 1 23.5 (2.5-69.0) 10.7 1.0       
NO2 (ppb) 1 23.7 (6.2-36.9) 6.1 0.86 1.0      
NOx (ppb) 1 47.9 (11.3-97.5) 16.9 0.97 0.93 1.0     
NO-LT (ppb) 2 28.7 (2.8-73.5) 11.8 0.86 0.82 0.88 1.0    
NO2-LT (ppb) 25.6 (6.0-43.0) 6.1 0.75 0.95 0.83 0.85 1.0   
NOx-LT (ppb) 55.3 (6.3-126.2) 16.9 0.83 0.87 0.89 0.98 0.89 1.0  
O3 (ppb)3 71.1 (46.2-129.8) 29.1 -0.35 -0.18 -0.36 -0.27 -0.08 -0.27 1.0 
PM2.5 (µm/m3) 21.5 (8.5-23.7) 2.4 0.51 0.68 0.59 0.37 0.56 0.44 -0.36 
(1) Estimates are from the final, optimized LUR model. 
(2) “LT” stands for “more local traffic impact”; these estimates are from the LUR model excluding traffic within 11 km buffers. 
(3) Kriged O3 estimates based on 8-hour maximum concentrations.
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were panel participants (i.e., participated in both surveys) while 296 were new entrants to the 
study.  Of the 1,387 interviewed children, 1,225 also completed some part of the health measures 
module and 1,070 participated in spirometry. Table 12 provides demographic information for all 
child respondents (n=1,387) and for those children with one or more acceptable spirometry 
curves (n=890) and for children with three acceptable and reproducible spirometry curves 
(n=395). The majority of children were 10 years of age or older (65%) and of Hispanic 
race/ethnicity (66%). Approximately 45% of children were overweight based on 2000 U.S. CDC 
BMI-for-age charts. Most children were reported to have health insurance in the previous month 
and a usual source of sick care. One-quarter of the families reported an income less than $20,000, 
which is approximately below the Federal Poverty Limit for a family of four for the period 2006-
2008. More than half of the families rented their home (58%) and 58% of PCG’s had a high 
school education or less. The majority of PCG’s were born outside of the US (62%). 
Percentagebreakdowns for other family and neighborhood characteristics considered in analyses 
are presented in Table 12. 
 A greater percentage of boys and children 10 years of age or older had one or more 
acceptable spirometry curves (Table 12). Children with three acceptable and reproducible curves 
were less likely to be Hispanic compared to those who had one or more acceptable curves and to 
all children who completed the survey. Children with one or more acceptable curves were also 
more likely to have respiratory symptoms based on parental report (i.e., doctor-diagnosed 
asthma, wheeze in the past 12 months, and asthma medication use for asthma or wheeze in the 
past 12 months), and a greater percentage came from families with incomes >$65,000, from 
families that were homeowners, and from families where the PCGs were born in the US 
compared to all children who completed the survey. A greater percentage of children with three 
acceptable and reproducible curves had PCGs with more than a high school education compared 
to all children and those with one or more acceptable curves. A greater percentage of adults in 
these families reported they were satisfied with their neighborhood, and reported higher levels of 
neighborhood cohesion and support. Higher percentages lived in neighborhoods (census tracts) 
with higher ratings of neighborhood cohesion and safety (based on averages of adult responses) 
and with less economic disadvantage. Overall, these differences were more pronounced for 
children with three acceptable and reproducible curves than for those with one or more 
acceptable curves. 
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Table 12. Demographic Characteristics (Number, Percent) of L.A. FANS-2 Child Participants  

 
Parameter 

All Subjects with 
Questionnaire Data 

(n=1,387) 
 

Subjects with One or 
More Acceptable 

Spirometry Curve 
(n=890) 

Subjects with 
Three Acceptable 
and Reproducible 

Spirometry Curves 
(n=395) 

 
Individual Level 
Gender 
Female 
Male 

716 (51.6) 
671 (48.4) 

 
404 (45.4) 
486 (54.6) 

174 (44.1) 
221 (55.9) 

Age (years)  
<5 
5-<10 
10-<15 
≥15 

 
100 (7.2) 
379 (27.3) 
551 (39.7) 
357 (25.7) 

 
-- 

222 (25.0) 
415 (46.6) 
253 (28.4) 

 
-- 

78 (19.8) 
190 (48.1) 
127 (32.1) 

Race/ethnicity  
Non-Hispanic White 
Hispanic 
African American 
Asian/Other 

262 (18.9) 
921 (66.4) 
105 (7.6) 
99 (7.1) 

 
165 (18.6) 
594 (66.7) 
65 (7.3) 
66 (7.4) 

73 (18.5) 
246 (62.3) 
36 (9.1) 
40 (10.1) 

Health insurance during past month  
Yes  
No 
Missing 

1187 (85.8) 
196 (14.2) 

4 

 
758 (85.3) 
131 (14.7) 

1 

335 (84.8) 
60 (15.2) 

 
Usual source of sick care 
Yes 
No 
Missing 

1298 (93.7) 
88 (6.4) 

1 

 
833 (93.7) 
56 (6.3) 

1 

370 (93.9) 
24 (6.1) 

1 
Overweight1 
Yes 
No  
Missing 

531 (44.7) 
658 (55.3) 

198 

 
411 (46.6) 
472 (53.4) 

7 

179 (45.8) 
212 (54.2) 

4 
Doctor-diagnosed asthma (ever) 
Yes 
No 

191 (13.8) 
1196 (86.2) 

 
131 (14.7) 
759 (85.3) 

67 (17.0) 
328 (83.0)  

Age of asthma diagnosis (years) – only for diagnosed 
asthmatics 
≤5 
6-<10 
10-<15 
≥15 
Missing 

125 (67.6) 
33 (17.8) 
22 (11.9) 
5 (2.7) 

6 

 
 

84 (66.1) 
25 (19.7) 
15 (11.8) 
3 (2.4) 

4 

38 (58.5) 
17 (26.2) 
9 (13.8) 
1 (1.5) 

2 
Wheeze in past 12 months 
Yes 
No 

145 (10.5) 
1242 (89.6) 

 
101 (11.4) 
789 (88.6) 

 
54 (13.7) 

341 (86.3) 
Wheeze with any night waking in past 12 months 
Yes 
No 

73 (5.3) 
1314 (94.7) 

 
52 (5.8) 

838 (94.2) 

 
29 (7.3) 

366 (92.7) 
Medication use for asthma or wheeze in past 12 
months 
Yes 
No 

162 (11.7) 
1225 (88.3) 

 
 

106 (11.9) 
784 (88.1) 

57 (14.4) 
338 (85.6) 

Sneezing or runny/block nose apart from cold in past 
12 months 
Yes 
No 
Missing 

270 (19.5) 
1116 (80.5) 

1 

 
 

179 (20.1) 
710 (79.9) 

1 

86 (21.8) 
308 (78.2) 

1 
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Parameter 

All Subjects with 
Questionnaire Data 

(n=1,387) 
 

Subjects with One or 
More Acceptable 

Spirometry Curve 
(n=890) 

Subjects with 
Three Acceptable 
and Reproducible 

Spirometry Curves 
(n=395) 

 
More than 3 doctor-diagnosed ear infections in 1 year 
Yes  
No 
Missing 

140 (10.1) 
1246 (89.9) 

1 

94 (10.6) 
795 (89.4) 

 

50 (12.7) 
344 (87.3) 

1 
Family Level 
Family Income (dollars)  
<20,000 
20,000-<35,000 
35,000-<65,000 
≥65,000 
Missing 

 
310 (24.5) 
321 (25.4) 
318 (25.2) 
315 (24.9) 

123 

 
208 (24.9) 
200 (24.0) 
209 (25.0) 
218 (26.1) 

55 

 
91 (25.0) 
70 (19.2) 
95 (26.1) 

108 (29.7) 
31 

Homeowner 
Yes 
No 
Missing 

 
548 (41.6) 
768 (58.4) 

71 

 
359 (41.9) 
497 (58.1) 

34 

 
178 (46.8) 
202 (53.2) 

15 
PCG’s education (years) 
<12  
12  
>12 
Missing 

563 (40.8) 
242 (17.5) 
576 (41.7) 

6 

 
362 (40.9) 
154 (17.4) 
369 (41.7) 

5 

148 (37.6) 
67 (17.0) 

179 (45.4) 
1 

Foreign born status of PCG 
US born 
Foreign born 

529 (38.1) 
858 (61.9) 

 
336 (37.8) 
554 (62.3) 

166 (42.0) 
229 (58.0) 

PCG current marital status 
Married or living with partner 
Unmarried/not living with partner 

 
1071 (77.2) 
316 (22.8) 

 
689 (77.4) 
201 (22.6) 

 
294 (74.4) 
101 (25.6) 

Current household smokers 
Yes 
No 
Missing 

297 (21.4) 
1088 (78.6) 

2 

 
190 (21.4) 
698 (78.6) 

2 

84 (21.3) 
311 (78.7) 

 
PCG current smoking status 
Yes 
No 
Missing 

126 (9.1) 
1260 (90.9) 

1 

 
85 (9.6) 

804 (90.4) 
1 

52 (13.2) 
342 (86.8) 

1 
Current smoker in home or PCG smoker 
Yes 
No 
Missing 

325 (23.5) 
1059 (76.5) 

3 

 
207 (23.3) 
680 (76.7) 

3 

97 (24.6) 
297 (75.4) 

1 
Either parent has asthma 
Yes 
No 
Missing 

 
144 (10.7) 

1204 (89.3) 
39 

 
98 (11.3) 

770 (88.7) 
22 

 
49 (12.7) 

336 (87.3) 
10 

Mother has asthma 
Yes 
No 
Missing 

96 (7.0) 
1277 (93.0) 

14 

 
62 (7.0) 

823 (93.0) 
5 

34 (8.7) 
357 (91.3) 

4 
Gas appliance in home (stove, range or oven) 
Yes 
No 

1287 (92.8) 
100 (7.2) 

 
821 (92.2) 
69 (7.8) 

370 (93.7) 
25 (6.3) 

Gas appliance with pilot light (stove, range or oven) 
Yes 
No 
Missing 

579 (42.5) 
782 (57.5) 

26 

 
384 (43.7) 
494 (56.3) 

12 

172 (44.3) 
216 (55.7) 

7 
Pests in home in past 12 months 
Yes 
No 

1047 (75.5) 
340 (24.5) 

 
677 (76.1) 
213 (23.9) 

301 (76.2) 
94 (23.8) 
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Parameter 

All Subjects with 
Questionnaire Data 

(n=1,387) 
 

Subjects with One or 
More Acceptable 

Spirometry Curve 
(n=890) 

Subjects with 
Three Acceptable 
and Reproducible 

Spirometry Curves 
(n=395) 

 
Cockroaches in home in past 12 months 
Yes 
No 

404 (29.1) 
983 (70.9) 

 
253 (28.4) 
637 (71.6) 

100 (25.3) 
295 (74.7)  

Mold in home in past 12 months 
Yes 
No 
Missing 

 
296 (21.4) 

1087 (78.6) 
4 

 
185 (20.9) 
702 (79.1) 

3 

 
79 (20.1) 

314 (79.9) 
2 

Furry pets in home 
Yes 
No 
Missing 

467 (34.7) 
879 (65.3) 

41 

 
311 (36.0) 
554 (64.0) 

25 

144 (37.4) 
241 (62.6) 

10 
Neighborhood satisfaction 
Very satisfied 
Satisfied or Neutral (if volunteered) 
Dissatisfied or Very dissatisfied 
Missing 

 
283 (24.3) 
705 (60.5) 
178 (15.3) 

221 

 
179 (23.5) 
475 (62.2) 
109 (14.3) 

127 

 
90 (26.6) 

201 (59.5) 
47 (13.9) 

57 
How safe to walk alone after dark in this neighborhood 
Completely safe 
Fairly safe or Somewhat dangerous 
Extremely dangerous 
Missing 

181 (15.6) 
921 (79.5) 
57 (4.9) 

228 

 
121 (15.9) 
600 (79.1) 
38 (5.0) 

131 

54 (16.0) 
267 (79.0) 
17 (5.0) 

57 
No. adults you recognize in neighborhood 
Many adults or most or all adults 
A few adults or no adults 
Missing 

 
595 (51.0) 
571 (49.0) 

221 

 
396 (51.9) 
367 (48.1) 

127 

 
179 (53.0) 
159 (47.0) 

57 
Neighborhood cohesion score2 
<2.52 (median) (higher) 
≥2.52 
Missing 

631 (54.7) 
523 (45.3) 

233 

 
421 (55.6) 
336 (44.4) 

133 

196 (58.2) 
141 (41.8) 

58 
No. relatives living in neighborhood 
Any 
None 
Missing 

468 (40.3) 
694 (59.7) 

233  

 
295 (38.8) 
465 (61.1) 

130 

125 (37.1) 
212 (62.9) 

58 
No. friends living in neighborhood 
Any 
None 
Missing 

804 (67.0) 
362 (31.1) 

221 

 
532 (69.7) 
231 (30.3) 

127 

232 (68.6) 
106 (31.4) 

57 
No. of neighbors talked to for 10 min in past 30 days 
Any 
None 
Missing 

 
1021 (87.6) 
144 (12.4) 

222 

 
671 (88.1) 
91 (11.9) 

128 

 
294 (87.2) 
43 (12.8) 

58 
No. groups participated in past 12 months 
Any 
None 
Missing 

 
420 (36.1) 
745 (63.9) 

222 

 
279 (36.6) 
483 (63.4) 

128 

 
123 (36.4) 
215 (63.6) 

57 
Neighborhood support score3 
1-<2 (higher) 
2-<4 
≥4 
Missing 

326 (28.3) 
737 (63.9) 
90 (7.8) 

234 

 
222 (29.4) 
475 (63.0) 
57 (7.6) 

136 

 
109 (32.6) 
197 (59.0) 
28 (8.4) 

61 
Neighborhood Level 
Census tract level rating of neighborhood cohesion4 
<2.53 (median) (higher) 
≥2.53 
Missing 

675 (51.1) 
646 (48.9) 

66 

 
446 (51.8) 
415 (48.2) 

29 

202 (52.7) 
181 (47.3) 

12 
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Parameter 

All Subjects with 
Questionnaire Data 

(n=1,387) 
 

Subjects with One or 
More Acceptable 

Spirometry Curve 
(n=890) 

Subjects with 
Three Acceptable 
and Reproducible 

Spirometry Curves 
(n=395) 

 
Census tract level rating of neighborhood safety5 
<2.13 (median) (higher) 
≥2.13 
Missing 

 
658 (49.8) 
663 (50.2) 

66 

 
433 (50.2) 
429 (49.8) 

28 

 
194 (50.7) 
189 (49.4) 

12 
Tract-level disadvantage6 
<0.13 (median) (lower) 
≥0.13 
Missing 

685 (49.7) 
694 (50.3) 

8 

 
433 (48.8) 
454 (51.2) 

3 

213 (54.1) 
181 (45.9) 

1 
Percent of tract in same home 5 years ago7 
<0.52 (median) 
≥0.52 
Missing 

 
684 (49.6) 
695 (50.4) 

8 

 
451 (50.8) 
436 (49.2) 

3 

 
189 (48.0) 
205 (52.0) 

1 
Census tract predominately Latino or White7 
Yes 
No 
Missing 

1072 (77.7) 
307 (22.3) 

8 

 
688 (77.6) 
199 (22.4) 

3 

 
294 (74.6) 
100 (25.4) 

1 
(1) Overweight is based on 2000 U.S. Centers for Disease Control BMI-for-age charts; separate charts are used for boys and 
girls. Children with BMI for age values at 85-<95th percentile are considered at risk for overweight; children with BMI for age 
values ≥95th percentile are considered overweight. Here the at risk of overweight and overweight groups were combined. Only 
children age 2 years and older that could stand on their own were measured for height and weight in the L.A. FANS-2 study. 
(2) Average of responses for the following questions (with reverse coding where necessary): (a) This is a close-knit 
neighborhood; (b) There are adults kids can look up to; (c) People are willing to help their neighbors; (d) Neighbors generally 
don’t get along; (e) Adults watch out that kids are safe; (f) People in neighborhood don’t share same values; (g) People in 
neighborhood can be trusted; (h) Parents in neighborhood know kids friends; (i) Adults in neighborhood know local kids’ (j) 
Parents in neighborhood know each other; (k) Neighbors do something if kid hangs out; (l) Would do something if kid does 
graffiti; (m) Would scold kid if showing disrespect. Responses for a-j were: 1=strongly agree, 2=agree, 3=unsure, 4=disagree, 
5=strongly disagree; Responses for k-m were: 1=very likely, 2=likely, 3=unsure, 4=unlikely, 5=very unlikely. 
(3) Average of responses (1=often, 2=sometimes, 3=rarely, 4=never) for the following questions: (a) How often do neighbors do 
favors for each other; (b) How often do neighbors watch each others property; (c) How often do neighbors ask advice.  
(4) This is the average of the neighborhood cohesion score for adult respondents in a given census tract. 
(5) This is the average of the neighborhood safety responses for adult respondents in a given census tract using the following 
numeric responses for each response: 1=completely safe, 2=fairly safe, 3=somewhat dangerous, 4=extremely dangerous. 
(6) This is the average of the following four variables for each census tract (based on U.S. Census 2000 data): percent poor 
families, percent households on public assistance, percent female headed families with children under the age of 18 years, 
percent male unemployment. 
(7) Based on U.S. Census 2000 data.
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Associations between Air Pollution Exposure Metrics and Respiratory Health Endpoints  
 Of the 1,387 L.A. FANS-2 children included in our analyses, 191 (13.8%) had received a 
doctor’s diagnosis of asthma,  while 145 (10.5%) suffered from wheeze, 162 (11.7%) used 
medications for asthma or wheeze, and 270 (19.5%) had sneezing or runny/blocked nose apart 
from colds in the past 12 months, according to PCG interview responses. Also according to PCG 
responses, 140 children (10.1%) had more than 3 doctor-diagnosed ear infections in one year 
during their lifetime. Table 13 provides a cross-classification of asthma, wheeze, and asthma 
medication use status. Approximately 37% (n=71) of the diagnosed asthmatics did not wheeze or 
use asthma medications in the previous year, 13% (n=24) did not report wheezing but did use 
medications, and 50% (n=95) reported wheezing whether on medication or not. Of the children 
reported to have suffered from wheeze in the previous 12 months (n=145), 34% (n=49) were not 
diagnosed with asthma. Twenty-six children who were not diagnosed with asthma and reported 
no wheeze, reported taking asthma medications in the previous year. 
 
Table 13. Distribution (Number, Percent) of Wheeze and Medication Use Outcomes Among 
L.A. FANS-2 Child Participants With and Without a Doctor-Diagnosis of Asthma 
(n=1,387) 

 Doctor-diagnosed Asthma 
(n=191) 

No Doctor-diagnosed 
Asthma (n=1196) 

Wheeze in past 12 mos, medication use 89 (46.6%) 23 (1.9%) 
Wheeze in past 12 mos, no medication use 7 (3.7%) 26 (2.2%) 
No wheeze in past 12 mos, medication use 24 (12.6%) 26 (2.2%) 
No wheeze in past 12 mos, no medication use 71 (37.1%) 1121 (93.7%) 

 
We report univariate associations between individual, family and neighborhood-level 

characteristics and the selected respiratory endpoints in Tables 14-19 (located at end of report).  
In univariate models, the odds of reporting an asthma diagnosis was higher for boys, overweight 
children and African American children, and lower for children who were uninsured in the 
previous month and who did not have a usual source of sick care, although the number of 
children without insurance and sick care was small.  Based on family-level characteristics, 
children with lower SES (measured by family income and PCG education level) were less likely 
to have an asthma diagnosis reported by PCGs than higher SES children. Children of foreign 
born PCGs were also less likely to have an asthma diagnosis reported while children of single 
parents were more likely to have diagnosed asthma reported. Presence of smokers in the home, 
especially smoking PCGs, increased the odds of diagnosed asthma, as did reports of pests in the 
home in the previous 12 months. Maternal asthma was a strong predictor of doctor-diagnosed 
asthma in the child. Children in families where adults felt the neighborhood was dangerous or 
reported no relatives in the neighborhood were more likely to have diagnosed asthma, but the 
other characteristics of the neighborhood as rated by the individual family did not appear to be 
related to this outcome (Table 14). Odds of diagnosed asthma appeared to be marginally lower in 
lower SES neighborhoods based on census tract level ratings of neighborhood cohesion and 
safety.   

 Univariate associations between demographic characteristics and odds of wheeze in the 
previous 12 months (current wheeze) were similar to those for doctor-diagnosed asthma (Table 
15). Main differences were that health insurance in the previous month and usual source of sick 
care were not as strongly related to this outcome as diagnosed asthma, and associations between 
family-level SES variables (income, homeowner status, and PCG education) appeared somewhat 
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stronger, whereby lower SES families reported less current wheeze in children. Also, reports of 
mold in the home in the previous 12 months and presence of furry pets increased the odds of 
reports of current wheeze more than of diagnosed asthma.  Interestingly, less neighborhood 
cohesion and support networks as reported by an adult participant were associated with reporting 
less current wheeze in the children. Similarly, a lower census-tract rating of neighborhood 
cohesion and higher tract-level disadvantage were also negatively associated with current 
wheeze. There were only 73 children for whom PCG’s reported wheeze with night waking in the 
previous 12 months. Univariate associations between demographic variables and this outcome 
were, in general, similar to those for current wheeze (Table 16), but the smaller sample size 
resulted in wider 95% confidence intervals for all univariate odds ratio estimates.  

For the outcome medication use for asthma or wheeze in the past 12 months, univariate 
associations for demographic variables were also very similar to those for doctor-diagnosed 
asthma (Table 17), except that lack of a usual source of sick care was not negatively related to 
this outcome; again, these odds ratio estimates were imprecise due to small numbers. Negative 
associations between family- and neighborhood-level ratings of neighborhood cohesion and 
support and this outcome were similar to those for current wheeze.  

Univariate associations for the outcomes sneezing, runny/blocked nosed apart from cold 
in past 12 months and lifetime occurrence of frequent ear infections (defined as more than three 
doctor-diagnosed ear infections in one year) are reported in Tables 18 and 19, respectively. For 
both outcomes, across several different indicators of family-level SES (income, homeowner 
status, PCG education), children from lower SES families were less likely to have these 
outcomes reported. This trend was also apparent for the census-level measures of neighborhood 
quality (i.e., census tract level ratings of neighborhood safety and cohesion and tract-level 
economic disadvantage). For all outcomes considered, foreign born PCGs were less likely to 
report that children had adverse respiratory symptoms. 

Among all respiratory outcomes and exposure measures we evaluated, the strongest 
associations we observed were between wheeze in the past 12 months (current wheeze) and NO, 
NO2 and NOx predicted by the more local traffic LUR model (Table 20). We estimated a 29% 
(95% CI=1.05-1.59) and 26% (95% CI=1.03-1.54) increase in odds of current wheeze per 
interquartile increase in 12-month average NO and NOx, respectively, after adjusting for age, 
race/ethnicity, sex and family income; the association for more local traffic NO2 was weaker 
(OR=1.19, 95% CI=0.95-1.50) but the 95% confidence interval for this estimate overlapped 
almost completely with those for NO and NOx measures. Adjustment for maternal asthma 
slightly moved estimates towards the null, while adjustment for overweight, group participation 
in the previous 12 months and census-tract level economic disadvantage slightly increased effect 
estimates; all other covariates evaluated did not result in changes in estimates >5% after 
adjustment for age, race/ethnicity, sex and family income.  Point estimates of effect based on 
more local traffic NO, NO2 and NOx exposures when evaluated for the current home and 
averaging over 2 years prior to interview were slightly lower, while averaging over 5 years prior 
to interview slightly higher than the 12-month estimates, but again 95% confidence intervals 
were widely overlapping (results not shown). Adjusting for peak 8-hour O3 did not change 
estimates of association between more local traffic NO, NO2 and NOx exposure metrics and 
current wheeze, while incorporating concentrations at school locations into exposure estimates 
tended to strengthen these associations (Table 21), although the 95% CIs for effect estimates 
based on home only versus home and school averages were widely overlapping. When analyses 
were stratified based on median level of census tract-level economic disadvantage, associations 
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Table 20. Associations (Odds ratios, 95% CIs) between Annual Average Air Pollution Exposure Metrics (12 Mos prior to Interview) 
and Wheeze in the Past 12 Months Among L.A. FANS-2 Participants Ages 0–17 Years 
Pollutant Crude (per IQR 

increase)1 
Model 1: 

Adjusting for 
age, 

race/ethnicity, 
sex, income 

Model 
1+Maternal 

Asthma 

Model 1+ No. of 
Groups 

Participated in 
past 12 mos 

 

Model 1+ Tract-
level 

disadvantage 

Model 
1+Overweight 

Model 1+ 
Maternal 

Asthma, No. of 
Groups 

Participated in 
past 12 mos, 
Overweight 

 

Model 1 + 
Maternal 

Asthma, No. of 
Groups 

Participated in 
past 12 mos, 
Tract-level 

disadvantage, 
Overweight 

NO 0.92 (0.74, 1.15) 1.19 (0.93, 1.52) 1.14 (0.88, 1.46) 1.26 (0.96, 1.65) 1.21 (0.94, 1.56) 1.23 (0.94, 1.62) 1.13 (0.84, 1.51) 1.15 (0.85, 1.55) 
NO2 0.91 (0.74, 1.13) 1.14 (0.89, 1.47) 1.09 (0.84, 1.40) 1.13 (0.86, 1.48) 1.15 (0.89, 1.49) 1.17 (0.88, 1.55) 1.02 (0.76, 1.37) 1.02 (0.76, 1.37) 
NOx 0.92 (0.74, 1.14) 1.18 (0.92, 1.51) 1.12 (0.87, 1.44) 1.24 (0.94, 1.64) 1.20 (0.93, 1.55) 1.23 (0.93, 1.63) 1.10 (0.82, 1.48) 1.11 (0.82, 1.51) 
NO-LT2 1.08 (0.89, 1.31) 1.29 (1.05, 1.59) 1.24 (1.00, 1.53) 1.39 (1.11, 1.74) 1.30 (1.06, 1.60) 1.37 (1.09, 1.72) 1.30 (1.02, 1.66) 1.31 (1.02, 1.67) 
NO2-LT 0.98 (0.80, 1.20) 1.19 (0.95, 1.50) 1.14 (0.90, 1.43) 1.17 (0.92, 1.50) 1.19 (0.95, 1.50) 1.22 (0.94, 1.57) 1.08 (0.83, 1.40) 1.08 (0.83, 1.40) 
NOx-LT 1.06 (0.88, 1.28) 1.26 (1.03, 1.54) 1.20 (0.98, 1.47) 1.34 (1.07, 1.67) 1.27 (1.04, 1.55) 1.33 (1.06, 1.67) 1.23 (0.97, 1.57) 1.24 (0.97, 1.57) 
O3 1.03 (0.79, 1.33) 0.90 (0.68, 1.20) 0.94 (0.70, 1.25) 0.81 (0.59, 1.11) 0.89 (0.67, 1.19) 0.94 (0.68, 1.29) 0.95 (0.67, 1.36) 0.95 (0.66, 1.36) 
PM2.5 0.95 (0.82, 1.10) 1.04 (0.88, 1.23) 1.02 (0.86, 1.21) 0.99 (0.83, 1.18) 1.04 (0.88, 1.23) 1.01 (0.84, 1.22) 0.91 (0.75, 1.10) 0.91 (0.75, 1.10) 
(1) Interquartile ranges (IQRs) for each pollutant were: NO=10.7 ppb; NO2=6.1 ppb; NOx=16.9 ppb; NO-LT=11.8 ppb; NO2-LT=6.1; NOx-LT=16.9 ppb; O3=29.1 ppb; 
PM2.5=2.4 µg/m3. 
(2) “LT” stands for “more local traffic impact” LUR model estimates. 
 
Table 21. Associations (Odds ratios1, 95% CIs) between Annual Average Air Pollution Exposure Metrics (12 Mo prior to Interview) 
and Wheeze in the Past 12 Months Among L.A. FANS-2 Participants Ages 0–17 Years: Incorporating School Locations and Stratifying 
on Neighborhood Disadvantage   
Pollutant Two Pollutant 

Model2 
HOME ONLY 

Two Pollutant 
Model2 

HOME+SCHOOL 

Tract-level 
disadvantage3 
<0.13 (median) 
HOME ONLY 

Higher SES 

Tract-level 
disadvantage3 

≥0.13 
HOME ONLY 

Lower SES 

Tract-level 
disadvantage3 
<0.13 (median) 

HOME+SCHOOL 
 
 

Tract-level 
disadvantage3 

≥0.13 
HOME+SCHOOL

 
 

NO-LT4 

O3 
1.31 (1.02, 1.68) 
1.02 (0.69, 1.49) 

1.42 (1.07, 1.87) 
1.03 (0.69, 1.54) 

1.41 (0.98, 2.02) 
0.70 (0.42, 1.16) 

1.40 (0.99, 1.98) 
1.80 (0.99, 3.24) 

1.63 (1.07, 2.49) 
0.74 (0.43, 1.28) 

1.46 (1.00, 2.12) 
1.60 (0.87, 2.96) 

NO2-LT 
O3 

1.08 (0.83, 1.41) 
0.95 (0.66, 1.37) 

1.14 (0.85, 1.53) 
0.94 (0.64, 1.39) 

1.35 (0.89, 2.04) 
0.62 (0.37, 1.06) 

1.09 (0.80, 1.55) 
1.51 (0.85, 2.70) 

1.60 (0.98, 2.59) 
0.62 (0.35, 1.09) 

1.09 (0.75, 1.58) 
1.33 (0.73, 2.42) 

NOx-LT 
O3 

1.24 (0.97, 1.58) 
1.00 (0.69, 1.47) 

1.34 (1.02, 1.75) 
1.02 (0.68, 1.53) 

1.39 (1.00, 1.94) 
0.69 (0.41, 1.14) 

1.30 (0.91, 1.85) 
1.76 (0.96, 3.23) 

1.60 (1.09, 2.36) 
0.72 (0.42, 1.25) 

1.33 (0.91, 1.96) 
1.60 (0.84, 2.95) 

(1) Odds ratios are per interquartile range (IQR) increase in each pollutant: NO=10.7 ppb; NO2=6.1 ppb; NOx=16.9 ppb; NO-LT=11.8 ppb; NO2-LT=6.1; NOx-LT=16.9 
ppb; O3=29.1 ppb; PM2.5=2.4 µg/m3. 
(2) Adjusting for age, race/ethnicity, sex, income, maternal asthma, overweight, no groups participated in past 12 months and tract-level disadvantage.  
(3) Stratified models are two-pollutant models, i.e., LUR variables or PM2.5 plus O3 in each model. Stratified models do not include adjustment for tract-level disadvantage.
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between more local traffic NO and NOx were similar in magnitude across strata, with an 
approximately 40% increase in odds of current wheeze per IQR increase in more local traffic NO 
and NOx (10.7 and 16.9 ppb increase, respectively) after adjusting for important covariates and 
peak O3 (Table 21). Interestingly, although no associations between peak 8-hour O3 and current 
wheeze were observed in higher SES neighborhoods (i.e., those with a tract-level disadvantage 
score lower than the median value of 0.13), we estimated an approximately 80% increase in 
current wheeze per IQR increase in O3 (29 ppb) for children living in lower SES areas, based on 
home only exposure averages (Table 21). Again, incorporating school locations into exposure 
averages tended to strengthen associations estimated by stratified analyses, but 95% CIs were 
widely overlapping with those for stratified analyses based on home only averages. Effect 
estimates stratified on median census tract-level rating of neighborhood safety followed a similar 
pattern as those for analyses stratified on tract-level disadvantage, but differences across strata 
were weaker (results not shown). There were no substantive differences in effect estimates across 
strata of tract-level ratings of neighborhood cohesion or percent in the same home as five years 
ago (results not shown). Associations between wheeze with night waking in the previous 12 
months and more local traffic LUR estimates for NO, NO2 and NOx were very similar to those 
for current wheeze with wider 95% confidence intervals due to smaller sample sizes for this 
outcome (results not shown); there was insufficient sample size for this outcome to perform 
stratified analyses.  

Associations between local traffic LUR exposure metrics and medication use for asthma 
or wheeze in the previous 12 months followed the same pattern as associations described for 
current wheeze, but were weaker (Table 22): odds of medication use increased 15% per 
interquartile increase in local traffic NO (95% CI=0.94-1.41) and NOx (95% CI=0.94-1.39), after 
adjustment for age, race/ethnicity, sex and income. Adjustment for maternal asthma slightly 
reduced point estimates, while adjustment for group participation in the previous 12 months and 
census-tract level rating of neighborhood cohesion slightly increased effect estimates; all other 
covariates evaluated did not result in changes in estimates >5% after adjustment for age, 
race/ethnicity, sex and family income. Effect estimates for exposures based on the current home 
only, on homes lived in 2 years prior to interview, and on homes lived in 5 years prior to 
interview were the same as, slightly lower and slightly higher, respectively, than those for the 
based on residences lived in during the 12-month prior to interview, but again, 95% confidence 
intervals widely overlapped (results not shown). Adjusting for peak 8-hour O3 did not change 
effect estimates for more local traffic NO, NO2 or NOx exposure metrics, while incorporating 
estimated concentrations at school locations into exposure averages slightly strengthened 
associations (Table 23). Similar to current wheeze, analyses stratified based on median tract-
level economic disadvantage suggested relatively strong associations between peak O3 and 
medication use for asthma or wheeze in lower SES areas, with an approximately two-fold 
increase in odds of this outcome per 29 ppb increase (IQR) in O3, while inverse associations 
between peak O3 and this outcome were observed in higher SES areas (Table 23). Similar to 
unstratified analyses, incorporating school locations tended to strengthen effect estimates, but 
95% CIs were widely overlapping with those for stratified analyses based on home only 
averages. Stratified analyses also suggested stronger associations between more local traffic NO 
and NOx and asthma medication use in higher SES areas, but again effect estimates were fairly 
imprecise with widely overlapping confidence intervals between the two strata. Effect estimates 
stratified on median census tract-level rating of neighborhood safety followed a similar pattern as 
those for analyses stratified on tract-level disadvantage, but differences across strata were weaker 
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Table 22. Associations (Odds ratios, 95% CIs) between Annual Average Air Pollution Exposure Metrics (12 Mos prior to Interview) 
and Medication Use for Asthma or Wheeze in the Past 12 Months Among L.A. FANS-2 Participants Ages 0–17 Years 

Pollutant Crude (per 
IQR increase)1 

Model 1: 
Adjusting for 

age, 
race/ethnicity, 

sex, income 

Model 
1+Maternal 

Asthma 

Model 1+ No. of 
Groups 

Participated in 
past 12 mos 

 

Model 1+ 
Tract-level 
rating of 

neighborhood 
cohesion 

Model 1+ 
Maternal 

Asthma, No. of 
Groups 

Participated in 
past 12 mos 

 

Model 1+ Maternal 
Asthma, No. of 

Groups 
Participated in past 
12 mos, Tract-level 

neighborhood 
cohesion 

NO 0.89 (0.72, 1.10) 1.04 (0.81, 1.32) 1.00 (0.78, 1.28) 1.04 (0.79, 1.37) 1.11 (0.86, 1.43) 0.99 (0.75, 1.30) 1.03 (0.78, 1.37) 
NO2 0.87 (0.71, 1.06) 1.01 (0.80, 1.28) 0.96 (0.76, 1.23) 0.96 (0.74, 1.24) 1.06 (0.83, 1.36) 0.91 (0.70, 1.18) 0.96 (0.73, 1.25) 
NOx 0.89 (0.72, 1.09) 1.04 (0.82, 1.33) 1.00 (0.78, 1.28) 1.04 (0.80, 1.37) 1.11 (0.87, 1.43) 0.98 (0.75, 1.29) 1.03 (0.78, 1.35) 
NO-LT2 1.04 (0.86, 1.25) 1.15 (0.94, 1.41) 1.11 (0.90, 1.36) 1.18 (0.94, 1.48) 1.20 (0.98, 1.48) 1.12 (0.89, 1.41) 1.14 (0.91, 1.44) 
NO2-LT 0.94 (0.78, 1.14) 1.08 (0.87, 1.34) 1.03 (0.83, 1.29) 1.03 (0.82, 1.30) 1.12 (0.90, 1.40) 0.97 (0.77, 1.23) 1.02 (0.80, 1.30) 
NOx-LT 1.03 (0.86, 1.24) 1.14 (0.94, 1.39) 1.10 (0.90, 1.34) 1.17 (0.94, 1.45) 1.19 (0.98, 1.45) 1.10 (0.88, 1.37) 1.13 (0.91, 1.41) 
O3 1.09 (0.85, 1.39) 0.99 (0.76, 1.30) 1.03 (0.78, 1.36) 0.95 (0.71, 1.28) 0.98 (0.74, 1.29) 0.99 (0.73, 1.35) 0.99 (0.73, 1.34) 
PM2.5 0.90 (0.78, 1.03) 0.98 (0.84, 1.15) 0.96 (0.82, 1.13) 0.93 (0.79, 1.09) 1.00 (0.85, 1.17) 0.91 (0.77, 1.07) 0.92 (0.78, 1.10) 
(1) Interquartile ranges (IQRs) for each pollutant were: NO=10.7 ppb; NO2=6.1 ppb; NOx=16.9 ppb; NO-LT=11.8 ppb; NO2-LT=6.1; NOx-LT=16.9 ppb; O3=29.1 ppb; 
PM2.5=2.4 µg/m3. 
(2) “LT” stands for “more local traffic impact” LUR model estimates. 
 
Table 23. Associations (Odds ratios1, 95% CIs) between Annual Average Air Pollution Exposure Metrics (12 Mo prior to Interview) 
and Medication Use for Asthma or Wheeze in the Past 12 Months Among L.A. FANS-2 Participants Ages 0–17 Years: Incorporating 
School Locations and Stratifying on Neighborhood Disadvantage   
Pollutant Two Pollutant 

Model2 
HOME ONLY 

Two Pollutant 
Model2 

HOME+SCHOOL 

Tract-level 
disadvantage3 
<0.13 (median) 
HOME ONLY 

 
 

Tract-level 
disadvantage3 

≥0.13 
HOME ONLY 

 
 

Tract-level 
disadvantage3 
<0.13 (median) 

HOME+SCHOOL 
 
 

Tract-level 
disadvantage3 

≥0.13 
HOME+SCHOOL

 
 

NO-LT4 

O3 
1.15 (0.91, 1.45) 
1.03 (0.75, 1.41) 

1.20 (0.93, 1.56) 
1.01 (0.71, 1.42) 

1.34 (0.94, 1.92) 
0.59 (0.37, 0.93) 

1.15 (0.84, 1.57) 
2.25 (1.37, 3.68) 

1.44 (0.96, 2.15) 
0.54 (0.33, 0.89) 

1.19 (0.85, 1.68) 
2.30 (1.36, 3.88) 

NO2-LT 
O3 

1.02 (0.80, 1.30) 
0.99 (0.73, 1.35) 

1.03 (0.79, 1.34) 
0.95 (0.69, 1.32) 

1.35 (0.92, 1.97) 
0.53 (0.33, 0.85) 

1.02 (0.75, 1.38) 
2.07 (1.27, 3.36) 

1.45 (0.94, 2.22) 
0.47 (0.28, 0.80) 

1.02 (0.74, 1.42) 
2.06 (1.23, 3.46) 

NOx-LT 
O3 

1.13 (0.91, 1.42) 
1.03 (0.75, 1.41) 

1.17 (0.91, 1.50) 
1.00 (0.71, 1.41) 

1.39 (1.00, 1.92) 
0.58 (0.36, 0.91) 

1.12 (0.82, 1.53) 
2.24 (1.34, 3.74) 

1.48 (1.02, 2.13) 
0.53 (0.32, 0.88) 

1.16 (0.82, 1.63) 
2.30 (1.33, 3.97) 

(1) Odds ratios are per interquartile range (IQR) increase in each pollutant: NO=10.7 ppb; NO2=6.1 ppb; NOx=16.9 ppb; NO-LT=11.8 ppb; NO2-LT=6.1; NOx-LT=16.9 
ppb; O3=29.1 ppb; PM2.5=2.4 µg/m3. 
(2) Adjusting for age, race/ethnicity, sex, income, maternal asthma, no groups participated in past 12 months and census tract-level neighborhood cohesion. 
(3) Stratified models are two-pollutant models, i.e., LUR variables or PM2.5 plus O3 in each model. Stratified models do not include adjustment for census tract-level 
neighborhood cohesion. 
(4) “LT” stands for “more local traffic impact” LUR model estimates.
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(results not shown). There were no substantive differences in effect estimates across strata of 
tract-level ratings of neighborhood cohesion or percent in the same home as five years ago 
(results not shown). 

We also observed marginally statistically significant associations between more local 
traffic LUR exposure metrics and odds of doctor-diagnosed asthma. We estimated an 
approximately 15% increase in odds of diagnosed-asthma per interquartile increase in more local 
traffic NO, NO2 and NOx, after adjusting for age, race/ethnicity, sex, and income (Table 24). 
Additional adjustment for factors that changed point estimates at least 5% did not result in 
substantially different findings (maternal asthma, any versus no relatives in the neighborhood, 
and census tract-level measures of neighborhood safety). Effect estimates for exposures based on 
the current home only or homes 2 years prior to interview were slightly lower, and estimates 
based on 5 years prior to interview exposures measures slightly higher, than those for the 12-
month prior to interview measure, but again, 95% confidence intervals widely overlapped 
(results not shown). Results incorporating concentrations at school locations and stratifying on 
tract-level disadvantage followed the same patterns as for the outcome medication use for asthma 
or wheeze in the past 12 months, but point estimates were, in general, weaker (Table 25). One 
exception was stronger associations between doctor-diagnosed asthma and more local traffic NO, 
NO2 and NOx in higher SES areas (Table 25) compared to associations between these exposure 
metrics and asthma medication use in higher SES areas. 

In general, results from analysis stratified on census tract-level ratings of neighborhood 
quality (i.e., cohesion, safety, disadvantage and percent in same home as five years ago), should 
be interpreted with caution due to the small sample size available to us. Originally, the L.A. 
FANS-2 study planned to enroll approximately 4,000 children (all of the L.A. FANS-1 children 
plus a sample of new entrants into each neighborhood). Despite extending data collection by 
approximately 1.5 years, the total number of L.A. FANS-2 child participants was approximately 
35% of the originally planned enrollment number. This issue is addressed further in the 
Discussion section.  

We did not observe associations between any of the pollutant exposure measures we 
evaluated and the outcomes sneezing or runny/blocked nose apart from cold in the previous 12 
months and more than three doctor-diagnosed ear infections in one year. 
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Table 24. Associations (Odds ratios, 95% CIs) between Annual Average Air Pollution Exposure Metrics (12 Mos prior to Interview) 
and Doctor-Diagnosed Asthma Among L.A. FANS-2 Participants Ages 0–17 Years 

Pollutant Crude (per 
IQR increase)1 

Model 1: 
Adjusting for 

age, 
race/ethnicity, 

sex, income 

Model 
1+Maternal 

Asthma 

Model 1+ No. of 
Relatives in 

Neighborhood 

Model 1+ 
Tract-level 

neighborhood 
safety 

Model 1+ 
Maternal 

Asthma, No. of 
Relatives in 

Neighborhood 

Model 1+ Maternal 
Asthma, No. of 

Relatives in 
Neighborhood, 

Tract-level 
neighborhood safety 

NO 0.92 (0.75, 1.12) 1.05 (0.84, 1.32) 1.01 (0.80. 1.27) 1.13 (0.88, 1.44) 1.10 (0.87, 1.38) 1.06 (0.83, 1.36) 1.07 (0.83, 1.39) 
NO2 0.95 (0.79, 1.16) 1.11 (0.88, 1.38) 1.05 (0.84, 1.33) 1.16 (0.91, 1.47) 1.13 (0.90, 1.42) 1.09 (0.85, 1.40) 1.10 (0.85, 1.41) 
NOx 0.93 (0.77, 1.13) 1.08 (0.86, 1.35) 1.03 (0.82, 1.29) 1.16 (0.91, 1.48) 1.12 (0.89, 1.41) 1.09 (0.85, 1.40) 1.10 (0.85, 1.41) 
NO-LT2 1.01 (0.85, 1.21) 1.12 (0.93, 1.36) 1.08 (0.89, 1.31) 1.19 (0.97, 1.46) 1.16 (0.96, 1.41) 1.13 (0.91, 1.39) 1.14 (0.92, 1.41) 
NO2-LT 1.02 (0.85, 1.22) 1.16 (0.95, 1.42) 1.11 (0.90, 1.37) 1.20 (0.97, 1.50) 1.18 (0.96, 1.44) 1.14 (0.91, 1.42) 1.14 (0.91, 1.43) 
NOx-LT 1.03 (0.87, 1.22) 1.14 (0.95, 1.37) 1.09 (0.90, 1.31) 1.21 (0.99, 1.47) 1.17 (0.98, 1.42) 1.14 (0.93, 1.39) 1.15 (0.95, 1.41) 
O3 0.99 (0.79, 1.25) 0.90 (0.70, 1.16) 0.94 (0.73, 1.22) 0.82 (0.62, 1.09) 0.86 (0.66, 1.12) 0.86 (0.64, 1.15) 0.86 (0.65, 1.15) 
PM2.5 0.98 (0.85, 1.12) 1.06 (0.90, 1.23) 1.04 (0.89, 1.22) 1.08 (0.91, 1.28) 1.08 (0.92, 1.27) 1.07 (0.90, 1.27) 1.05 (0.89, 1.25) 
(1) Interquartile ranges (IQRs) for each pollutant were: NO=10.7 ppb; NO2=6.1 ppb; NOx=16.9 ppb; NO-LT=11.8 ppb; NO2-LT=6.1; NOx-LT=16.9 ppb; O3=29.1 ppb; 
PM2.5=2.4 µg/m3. 
(2) “LT” stands for “more local traffic impact” LUR model estimates. 
 
Table 25. Associations (Odds ratios1, 95% CIs) between Annual Average Air Pollution Exposure Metrics (12 Mo prior to Interview) 
and Doctor-Diagnosed Asthma Among L.A. FANS-2 Participants Ages 0–17 Years: Incorporating School Locations and Stratifying on 
Neighborhood Disadvantage   
Pollutant Two Pollutant 

Model2 
HOME ONLY 

Two Pollutant 
Model2 

HOME+SCHOOL 

Tract-level 
disadvantage3 
<0.13 (median) 
HOME ONLY 

Higher SES 

Tract-level 
disadvantage3 

≥0.13 
HOME ONLY 

Lower SES 

Tract-level 
disadvantage3 
<0.13 (median) 

HOME+SCHOOL 
 
 

Tract-level 
disadvantage3 

≥0.13 
HOME+SCHOOL

 
 

NO-LT4 

O3 
1.12 (0.90, 1.40) 
0.89 (0.66, 1.19) 

1.13 (0.89, 1.45) 
0.87 (0.64, 1.20) 

1.39 (0.98, 1.96) 
0.58 (0.38, 0.88) 

1.05 (0.78, 1.41) 
1.46 (0.92, 2.31) 

1.46 (1.00, 2.15) 
0.55 (0.35, 0.86) 

1.07 (0.77, 1.49) 
1.47 (0.90, 2.41) 

NO2-LT 
O3 

1.14 (0.91, 1.44) 
0.86 (0.64, 1.16) 

1.12 (0.88, 1.44) 
0.85 (0.62, 1.16) 

1.45 (1.01, 2.10) 
0.51 (0.32, 0.80) 

1.16 (0.86, 1.55) 
1.55 (0.98, 2.45) 

1.54 (1.02, 2.30) 
0.48, (0.30, 0.77) 

1.14 (0.83, 1.56) 
1.53 (0.94, 2.50) 

NOx-LT 
O3 

1.13 (0.92, 1.40) 
0.89 (0.66, 1.20) 

1.13 (0.90, 1.43) 
0.88 (0.64, 1.20) 

1.44 (1.04, 1.97) 
0.57 (0.37, 0.87) 

1.05 (0.78, 1.42) 
1.47 (0.91, 2.38) 

1.50 (1.05, 2.14) 
0.54 (0.34, 0.85) 

1.07 (0.77, 1.49) 
1.49 (0.89, 2.49) 

(1) Odds ratios are per interquartile range (IQR) increase in each pollutant: NO=10.7 ppb; NO2=6.1 ppb; NOx=16.9 ppb; NO-LT=11.8 ppb; NO2-LT=6.1; NOx-LT=16.9 
ppb; O3=29.1 ppb; PM2.5=2.4 µg/m3. 
(2) Adjusting for age, race/ethnicity, sex, income, maternal asthma, no. relatives in neighborhood and census tract-level neighborhood safety.  
(3) Stratified models are two-pollutant models, i.e., LUR variables or PM2.5 plus O3 in each model. Stratified models do not include adjustment for census tract-level 
neighborhood safety. 
(4) “LT” stands for “more local traffic impact” LUR model estimates. 
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Associations between Air Pollution Exposure Metrics and Lung Function  
  Distributions of lung function parameters are presented in Table 26. Overall, mean lung 
volumes and flows, as expected, were greater for boys than for girls, and were also greater for 
the 395 children with three acceptable and reproducible curves, as defined by 1994 American 
Thoracic Society guidelines127 compared to the 890 children with one or more acceptable curves. 
Table 27 provides a breakdown of the number of acceptable and reproducible curves by age 
group. Children 5-<10 years of age were less likely to have three acceptable and reproducible 
curves than children 10 years and older.  
 
Table 26. Mean (SD) Lung Function in L.A. FANS-2 Participants Ages 5-17 Years 

Lung Function Boys 
(1 or More 
Acceptable 

Curves, n=486) 

Boys 
(3 Acceptable and 

Reproducible 
Curves, n=221) 

Girls 
(1 or More 
Acceptable 

Curves, n=404) 

Girls (3 
Acceptable and 
Reproducible 

Curves, n=174) 
FEV1 (mL) 2629 (1036) 2730 (1018) 2369 (744) 2500 (616) 
FVC (mL) 3193 (1231) 3267 (1198) 2800 (861) 2958 (733) 
PEF (mL/s) 5758 (2291) 6039 (2130) 5347 (1947) 5712 (1552) 
FEF75 (mL/s) 1455 (818) 1491 (793) 1409 (707) 1419 (633) 
FEF25-75 (mL/s) 2807 (1332) 2940 (1263) 2695 (1069) 2828 (932) 
 
Table 27. Summary of Acceptable and Reproducible Spirometry Curves by Age Group  
(N, percent) 
Age  group 1 acceptable 

curve 
2 acceptable 
curves, not 

reproducible 

2 acceptable 
and 

reproducible 
curves 

3 acceptable 
curves, not 

reproducible 

3 acceptable 
and 

reproducible 
curves 

5-<10 years1 46 (21) 24 (11) 62 (28) 12 (5) 78 (35) 
10-<15 years 41 (10) 40 (10) 94 (22) 50 (12) 190 (46) 
≥15 years 30 (12) 22 (9) 46 (18) 28 (11) 127 (50) 
All ages2 117 (13) 86 (10) 202 (23) 90 (10) 395 (44) 
(1) Percents are based on all children of given age group with one or more acceptable curves (i.e., 222 for 5-<10 

years, 415 for 10-<15 years and 253 for ≥15 years). 
(2) Percents are based on all children with one or more acceptable curves (n=890). 
 
 For boys with one or more acceptable maneuvers, we estimated decrements across all 
lung function measures with increasing exposure to LUR estimates of NO, NO2 and NOx based 
on current home exposure averages; decrements were also observed with increasing exposure to 
annual average PM2.5 as estimated by a kriged surface for the L.A. Basin (Table 28). We 
estimated an approximately 50-70 mL decrease in the two volume measures FEV1 and FVC per 
interquartile increase in LUR NO, NO2 and NOx (10.9, 5.9 and 17.1 ppb, respectively), after 
adjusting for age, race/ethnicity, height and height2 and being overweight.  Estimated decrements 
per IQR increase in PM2.5 (2.4 μg/m3) were smaller at approximately 30 mL.   For the flow 
measures, we estimated an approximately 70 mL/s reduction in FEF75 and 100 mL/s reduction in 
FEF25-75 per IQR increase in NO, NO2 and NOx (Table 28). Decrements in PEF were similar in 
magnitude to those for FEF75, but all estimates were non-significant with wide 95% confidence 
intervals (results not shown). Additional adjustment for important covariates slightly increased 
effect estimates, while adjustment for peak 8-hour O3 did not change estimates (Table 28). 
Incorporating concentrations at school locations in exposure estimates slightly strengthened 
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Table 28. Associations (Betas1, 95% CIs) between Annual Average Air Pollution Exposure Metrics (Current Home) and Lung Function 
Among L.A. FANS-2 Participants, Boys Ages 5–17 Years   

1 OR MORE ACCEPTABLE CURVES (n=486) 3 ACCEPTABLE AND REPRODUCIBLE CURVES (n=221) Lung 
Function  

Pollutant 
Adjusting for 

age, 
race/ethnicity, 
height, height2, 

overweight 

Final Model2 
HOME ONLY

Two-Pollutant 
Model3 

HOME ONLY 

Two-Pollutant 
Model3 
HOME 

+SCHOOL 

Adjusting for 
age, 

race/ethnicity, 
height, height2, 

overweight 

Final Model2 
HOME ONLY 

 Two-Pollutant 
Model3  

HOME ONLY 

Two-Pollutant 
Model3  
HOME 

+SCHOOL 

FEV1 
(mL) 

         

 NO -63 (-119, -8) -75 (-144, -6) -69 (-141, 2) -97(-176, -18) -70 (-148, 7) -45 (-147, 56) -48 (-146, 50) -44 (-149, 60) 
 NO2 -60 (-113, -7) -75 (-137 ,-14) -75 (-138, -12) -72 (-138, -6) -60 (-129, 8) -78 (-157, 0.5) -73 (-151, 5) -67 (-149, 16) 
 NOx -73 (-128, -17) -91 (-159, -24) -90 (-162, -18) -100 (-177, -22) -67 (-142, 8) -54 (-150, 43) -63 (-157, 30) -64 (-164, 36) 
 PM2.5 -33 (-71, 5) -52 (-98, -7) -50 (-99, -2) -46 (-95, 3) -47 (-96, 3) -62 (-121, -4) -50 (-111, 11) -55 (-114, 5) 

FVC (mL)          
 NO -52 (-119, 15) -60 (-141, 22) -56 (-141, 28) -86 (-179, 7) -46 (-134, 42) -43 (-164, 78) -50 (-170, 70) -80 (-205, 45) 
 NO2 -46 (-111, 18) -67 (-139, 4) -66 (-139, 7) -70 (-147, 6) -56 (-136, 25) -80 (-175, 16) -75 (-171, 22) -76 (-176, 24) 
 NOx -56 (-123, 12) -76 (-155, 4) -75 (-159, 9) -95 (-184, -5) -62 (-150, 25) -50 (-165, 65) -59 (-175, 56) -78 (-199, 43) 
 PM2.5 -28 (-73, 17) -45 (-97, 6) -47 (-102, 8) -44 (-99, 11) -49 (-107, 9) -56 (-126, 14) -48 (-121, 26) -58 (-129, 14) 
          

FEF75 
(mL/s) 

         

 NO -62 (-126, 2) -39 (-119, 40) -39 (-122 43) -58 (-150, 35) -39 (-133, 54) -30 (-154, 93) -11 (-135, 113) 20 (-113, 153) 
 NO2 -67 (-128, -5) -63 (-133, 7) -64 (-135, 8) -74 (-150, 1) -23 (-107, 62) -75 (-176, 26) -63 (-164, 38) -54 (-159, 51) 
 NOx -67 (-131, -2) -60 (-137, 18) -62 (–144, 19) -77 (-167, 12) -37 (-128, 54) -52 (-171, 67) -38 (-158, 83) -20 (-148, 108) 
 PM2.5 -47 (-91, -2) -56 (-108, -4) -62 (-117, -7) -62 (-119, -5) -34 (-95, 26) -103 (-174, -33) -68 (-143, 8) -78 (-154, -3) 
          

FEF25-75 
(mL/s) 

         

 NO -105 (-206, -4) -65 (-187, 57) -55 (-181, 72) -85 (-225, 54) -129 (-282, 25) -45 (-250, 159) -61 (-257, 135) -27 (-231, 178) 
 NO2 -93 (–188, 2) -104 (-212, 3) -99 (-208, 10) -115 (-229, -0.4) -91 (-227, 44) -137 (-297, 23) -114 (-272, 45) -114 (-275, 48) 
 NOx -108 (-208, -9) -101 (-220, 18) -93 (-218, 31) -116 (-251, 18) -151 (-301, -2) -99 (-289, 91) -101 (-289, 88) -83 (-278, 112) 
 PM2.5 -53 (-123, 16) -90 (-170, -10) -89 (-174, -4) -92 (-177, -7) -67 (-164, 30) -139 (-251, -26) -112 (-228, 4) -122 (-237, -6) 

(1) Interquartile ranges (IQRs) for each pollutant were: NO=10.9 ppb; NO2=5.9 ppb; NOx=17.1 ppb; PM2.5=2.4 µg/m3. 
(2) Adjusting for age, race/ethnicity, height, height2, overweight, income, no usual source of sick care, maternal asthma, furry pets in home, PCG smoking status, PCG 
education level, no. of neighbors talked to for 10 min in past 30 days, and census tract-level disadvantage.  
(3) LUR variables or PM2.5 plus O3 in each model.
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estimated effect sizes. Similar or slightly lower decrements in lung function as presented in 
Table 28 were estimated for the other exposure periods evaluated (1-year, 2-years and 5-years 
prior to interview) and associations for the more local traffic LUR exposure estimates were 25-
65% lower than those for the final, optimized model LUR exposure metrics and not statistically 
significant (results not shown).  

When restricting analyses to boys with three acceptable and reproducible curves, similar 
magnitude decrements in FEV1 and FVC were observed per IQR increases in LUR estimates of 
NO, NO2 and NOx and kriged estimates of PM2.5, but effect estimates were less precise and not 
statistically significant (Table 28). For the flow measures FEF75 and FEF25-75, associations with 
NO2 and especially PM2.5 were similar in magnitude, while associations with NO and NOx 
weakened with 95% CIs spanning the null value (Table 28).  

Analyses stratified on census-tract level indicators of neighborhood quality for boys with 
one or more acceptable curves suggested greater lung function decrements with increasing air 
pollution for children living in more cohesive and higher SES neighborhoods for some endpoints 
and pollutants, but none of these interactions were statistically significant (i.e., 95% CIs for point 
estimates across strata widely overlapped). Associations also appeared greater for boys who had 
a doctor-diagnosis of asthma versus those without an asthma diagnosis, but again, 95% CIs 
across strata overlapped. There was insufficient sample size for meaningful stratified analyses 
when restricting to boys with three acceptable and reproducible curves.   

For girls with one or more acceptable spirometry curves, we estimated 40-80 mL 
decrements in FEV1 per IQR increase in NO, NO2, and NOx and 30 mL decrement per IQR 
increase in PM2.5 averaged over the five years prior to interview, after adjusting for important 
covariates, peak 8-hour O3 and taking concentrations at school locations into account in exposure 
averages (Table 29). However, unlike for boys, we did not observe associations between any of 
our exposure metrics and FVC in girls. Associations between the traffic markers NO, NO2 and 
NOx and the flow measures PEF and FEF25-75 were much stronger in girls than in boys. We 
estimated 300-350 mL/s decrements in PEF and 200-300 ml/s decrements in FEF25-75 per IQR 
increase in NO, NO2 and NOx in final models adjusted for O3 and taking school concentrations 
into account (Table 29). Reductions in FEF75 with increases in NO, NO2 and NOx were similar to 
those estimated for boys (~60-90 ml/s), but less precisely estimated. Associations for the more 
local traffic LUR metrics were very similar those those for the final, optimized model exposure 
metrics. Estimated negative associations between LUR measures for NO, NO2 and NOx and lung 
function decreased when considering shorter time periods prior to interview (2-years and 1-year 
prior to interview), and no associations were observed for current home exposure estimates 
(results not shown).  

No associations between the LUR traffic metrics and lung function were observed when 
we restricted analyses to girls with three acceptable and reproducible curves.  When restricting to 
this subset of girls, we observed decrements in lung function only for the parameter PEF (mL/s) 
with increasing exposure to annual average peak O3, based on kriged estimates extracted for the 
current home (Table 30). Specifically, we estimated an approximately 400 mL/s decrement in 
PEF per interquartile increase in O3 (29.9 ppb) in final models adjusting for LUR NO2 and taking 
into account concentrations at school locations (O3 effect estimates when adjusting for NO, NOx 
and PM2.5 were similar). Although we also estimated PEF decrements with increasing O3 for  
girls with one or more acceptable curves, point estimates were lower and 95% confidence 
intervals spanned zero (-123 mL/s, 95% CI=-323, 63). Point estimates for the other time periods 
evaluated (1-, 2-, and 5-year O3 estimates) were similar to those for exposures based on the 
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Table 29. Associations (Betas1, 95% CIs) between Annual Average Air Pollution Exposure Metrics  
(5-Years Prior to Interview) and Lung Function Among L.A. FANS-2 Participants, Girls Ages 5–17 Years   

1 OR MORE ACCEPTABLE CURVES (n=404) Lung 
Function  

Pollutant 
Adjusting for age, 

race/ethnicity, 
height, height2,  
weight, weight2, 

overweight 

Final Model2 
HOME ONLY 

Two-Pollutant 
Model3  

 HOME ONLY 

Two-Pollutant 
Model3 

HOME+SCHOOL 

FEV1      
 NO -69 (-125, -14) -74 (-143, -5) -59 (-128, 9) -43 (-131, 45) 
 NO2 -52 (-106, 3) -81 (-142, -19) -66 (-127, -4) -65 (-137, 7) 
 NOx -63 (-118, -7) -79 (-145, -14) -66 (-133, 0.7) -78 (-157, 1) 
 PM2.5 -33 (-73, 7) -40 (-86, 7) -42 (-90, 5) -30 (-83, 24) 

FVC      
 NO -38 (-100, 23) -2 (-75, 72) 10 (-65, 85) 17 (-79, 113) 
 NO2 -21 (-80, 38) -5 (-73, 63) 19 (-49, 87) 8 (-70, 86) 
 NOx -38 (-98, 22) -4 (-74, 67) 9 9-64, 81) -23 (-111, 65) 
 PM2.5 -24 (-67, 18) -20 (-68, 27) 0.3 (-52, 52) -5 (-62, 52) 
      

PEF NO -129 (-290, 32) -123 (-326, 79) -178 (-383, 28) -322 (-572, -72) 
 NO2 -183 (-333, -32) -204 (-387, -21) -260 (-439, -81) -332 (-532, -132) 
 NOx -158 (-314, -1) -155 (-347, 38) -229 (-428, -31) -355 (-585, -125) 
 PM2.5 29 (-85, 142) -49 (-179, 80) -69 (-215, 77) -64 (-218, 91) 
      

FEF75 NO -52 (-133, 30) -94 (-186, -1) -79 (-170, 12) -89 (-200, 22) 
 NO2 -18 (-95, 58) -48 (-132, 36) -46 (-126, 33) -62 (-155, 30) 
 NOx -37 (-116, 42) -80 (-168, 7) -70 (-157, 18) -82 (-185, 22) 
 PM2.5 -2 (-62, 57) -13 (-74, 48) -9 (-73, 54) -36 (-109, 36) 
      

FEF25-75 NO -157 (-279, -36) -187 (-324, -50) -202 (-340, -63) -279 (-448, -110) 
 NO2 -103 (-220, 13) -171 (-297, -44) -150 (-278, -22) -207 (-356, -59) 
 NOx -151 (-269, -33) -173 (-302, -45) -220 (-354, -85) -287 (-447, -127) 
 PM2.5 -45 (-131, 42) -43 (-139, 53) -35 (-140, 71) -86 (-202, 29) 

(1) Interquartile ranges (IQRs) for each pollutant were: NO=10.9 ppb; NO2=5.8 ppb; NOx=16.7 ppb; PM2.5=2.4 µg/m3. 
(2) Adjusting for age, race/ethnicity, height, height2, weight, weight2, overweight, income, no usual source of sick care, maternal asthma, furry pets in home, PCG 
smoking status, foreign born status of PCG, group participation in past 12 months, no. of adults recogonize in neighborhood, and census tract-level disadvantage.  
(3) LUR variables or PM2.5 plus O3 in each model. 
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Table 30. Associations (Betas1, 95% CIs) between Annual Average Peak 8-Hour Ozone 
(Current Home) and Lung Function Among L.A. FANS-2 Participants, Girls Ages 5–17 
Years   

Lung 
Function 

Adjusting for 
age, 

race/ethnicity, 
height, height2, 
weight, weight2, 

overweight 

Final Model2 
HOME ONLY 

Two-Pollutant 
Model3  

HOME ONLY 

Two-Pollutant 
Model3 

HOME+SCHOOL 

Girls with 1 or More Acceptable Curves (n=404) 
PEF 41 (-120, 202) -85 (-288, 118) -135 (-333, 63) -123 (-323, 76) 

Girls with 3 Acceptable and Reproducible Curves (n=174) 
PEF -183 (-381, 15) -398 (-641, -155) -435 (-681, -188) -420 (-668, -171) 

(1) Betas are per IQR increase of 29.9 ppb O3. 
(2) Adjusting for age, race/ethnicity, height, height2, weight, weight2, overweight, income, no usual source of sick 
care, maternal asthma, furry pets in home, PCG smoking status, foreign born status of PCG, group participation in past 
12 months, no. of adults recogonize in neighborhood, and census tract-level disadvantage.  
(3) Two-pollutant model presented is O3 plus NO2; O3 effect estimates adjusting for NO, NOx and PM2.5 were very 
similar. 
 
current home.  

Similar to results for boys, analyses stratified on census-tract level indicators of 
neighborhood quality for girls with one or more acceptable curves suggested greater lung 
function decrements with increasing air pollution in more cohesive and higher SES 
neighborhoods for some endpoints and pollutants, but none of these interactions were 
statistically significant (i.e., 95% CIs for point estimates across strata widely overlapped). There 
were only 18 asthmatic girls with one or more acceptable spirometry curves, so analyses 
stratified on asthma status were not possible. There was also insufficient sample size for 
meaningful stratified analyses when restricting to girls with three acceptable and reproducible 
curves.   
 In final logistic and linear models reported above, adding a second-level with a random 
intercept for family to account for non-independence of siblings (i.e., clustering at the family 
level) changed effect estimates minimally. 
 
V. DISCUSSION   
LUR Model Development 

We modeled NO, NO2 and NOx concentrations for the LA metropolitan area using “A 
Distance Decay REgression Selection Strategy” (ADDRESS). Our final three prediction models 
explained 81%, 86% and 85% of NO, NO2 and NOx variances, respectively. Thus, these models 
have a higher prediction power (R2) than a large majority of previously published LUR 
surfaces.133,134 To our knowledge, this is the first application of an intensive air pollution 
monitoring campaign (with 201 samplers) to model traffic-related air pollution in a large, 
distributed urban area like Los Angeles. Our LUR models and semivariograms suggest that the 
distance of influence for highways and major roads in this region is greater than 10 km. The 
spatial extent of traffic impacts on NO, NO2 and NOx were much greater than previously 
reported in the literature. For example, Zhou and Levy7 reported spatial extents for traffic 
impacts on the order of 100-300 and 200-500 m for NO and NO2, respectively, based on a 
compilation of published LUR models. Because of LA's geography, infrastructure, road network 
and population characteristics, land use regression models based on a limited number of buffer 
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distances (up to 5000 m) were found inadequate to optimize models to predict the spatial 
distribution of traffic related air pollution, as represented by NO, NO2 and NOx. Most previous 
LUR models used circular area buffers of less than 1500 m for examining roadway and traffic 
variables, and land use and population density within a maximum distance of 3000 m.29,132 
Typically, for a medium-sized city (2-5 million population), the influence of traffic diminishes 
with increasing distance from roads, and local sources of pollution dominate over background 
effects.29,133 Highways (including primary and secondary) have a total length of more than 3000 
km, and highway and major road densities are 435 and 1669 m per km2, respectively, in the L.A. 
Basin, much higher than corresponding road categories for a typical medium-sized city.  

Differences in NO and NO2 spatial surfaces across cities may also be due to differences in 
spatial distributions of ozone. NO reacts with ambient ozone to form NO2, and the combination 
of this reaction and dilution in the surrounding air mass near roadways typically results in a rapid 
decrease in concentration with downwind distance.7 For NO2, on the other hand, the dominant 
formation process (NO + O3 -> NO2) slows down its dilution and concentrations decrease at a 
more gradual rate. Though levels of O3 are relatively high in LA, concentrations are lower in the 
morning during the high traffic commuting period and also lower in the winter. By contrast, NOx 
concentrations are high during those time periods. For a mega-city such as LA, the intertwined 
high density highway and major road network probably make O3 concentrations insufficient to 
remove high  NO emissions from traffic (especially during the winter and morning rush hours) 
near sources and thus the formation of NO2 appears to continue to even greater distances. The 
semivariograms (Figure 7) and spatial distance decay of pollutant concentrations (Figures 9 and 
10) demonstrate the slow decrease of NO and NO2 concentrations from highways and major 
roadways in L.A. compared to values summarized by Zhou and Levy.7 

However, we also generated a second set of “more local traffic” LUR models which 
excluded traffic volumes on highways and major roads beyond 5 km. The prediction power for 
NO, NO2 and NOx in these models that ignored traffic within a buffer distance greater than 5000 
m were 0.64, 0.78 and 0.68, respectively, i.e. comparable to previous LUR models published in 
the literature but much lower than the full models developed here. If from the point of prediction 
power, the previous LUR models successfully predicted local sources of air pollution, they paid 
little attention to contributions from background traffic sources (e.g., at buffer distances >5 km), 
that we found important in a mega-city like L.A. Earlier regional studies in England similarly 
reported even larger influence areas for NO2 ― suggesting that regional patterns are an 
important contributor to NO2 levels in this locale.135 Based on the trend curves in Figures 5 and 
6, 50% reductions in near source concentrations of NO and NO2 are not reached until 3000 and 
5000 m from highways, respectively, while 10% reductions occur at distances greater than 10000 
m. Annual average concentrations based on the 15 SCAQMD monitoring sites were 24.7 and 
24.3 ppb for NO and NO2, respectively. If we consider these as “background” levels, then such 
levels are still 45.8% and 73.2% as high as near source concentrations (53.9 and 33.2 ppb for NO 
and NO2, respectively). Thus, background concentrations were high even though both NO and 
NO2 are generally considered reactive pollutants. As background concentrations increase, spatial 
extents increase correspondingly.7  In addition, high emission rates also increase the spatial 
extent of traffic impacts for absolute comparisons.7 Because of the limited sample size of 
previous studies (mostly <100 monitoring sites) and smaller urban areas studied versus a mega-
city such as LA, the greater distance of influence of background traffic effects has not been fully 
identified previously. Here, we found that levels of NOx pollution at a residence in a mega-city 
may be influenced by local traffic sources, and in addition may depend on strongly on urban-
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scale background traffic sources.  
It should be noted, however, that although incorporation of traffic impacts from distances as 

far away as 11 km improved LUR model prediction ability for NO, NO2 and NOx specifically, it 
is currently unknown how well these models predict other pollutants released directly in motor 
vehicle exhaust that are also of biologic interest, such as polycyclic aromatic hydrocarbons 
(PAHs) sorbed to particles from diesel engines and ultrafine particles (less than 0.1 microns in 
aerodynamic diameter). Ultrafine particles are of concern from a health standpoint because they 
are more able to penetrate cellular targets in the lung and enter systemic circulation than larger 
size particles.1,22,24,136  Measurement studies at urban sites in LA indicate a large portion of UF 
consist of organic carbon, followed by elemental carbon, as primary products from vehicle 
emissions and that UF contain the largest fraction of PAHs by mass.51,52,137 Organic components 
of PM, which comprise a large proportion of freshly emitted exhaust, have been shown to induce 
a broad polyclonal expression of cytokines and chemokines in respiratory epithelium.52,138 This 
may be due to the action of PAHs, metals and related compounds that lead to the production of 
cytotoxic reactive oxygen species (ROS). In L.A., concentrations of ultrafine particles have been 
shown to decrease exponentially with distance from freeways, reaching background 
concentrations within approximately 150 meters (500 feet).8-13 Similarly, measurement data for 
PM10 and PM2.5 absorbance, black smoke, particle-bound PAHs, and elemental carbon (EC) – all 
markers of exhaust particle emissions – indicate strong spatial gradients in concentrations with 
peaks near roadway sources.7,12,13,139-148 Thus, it may be that the “more local traffic” LUR models 
we developed here provide better surrogate estimates of exposure for fresh vehicle exhaust 
including UF and associated toxics; hwoever, additional measurement data would be needed to 
examine this hypothesis further.  

A novel aspect of our modeling process was use of satellite remote sensing data to help build 
prediction models. Satellite remote sensing of air quality has evolved dramatically over the last 
decade. Global observations are now available for a wide range of species including aerosols, 
tropospheric O3, tropospheric NO2, CO (carbon monoxide), HCHO (formaldehyde), and SO2 
(sulfur dioxide).149  However, the resolution of these sensors is coarser than 10 km. To help 
model small area variation (e.g., 30 m resolution) of pollutant concentrations and compare its 
effects with land use variables, Landsat ETM+ data of resolution 30 m were used. The satellite 
data may over-estimate roadway emissions in some degree, but will not be overwhelmingly 
biased because the spectral information between a tar-roofed building and an often vehicle 
traveled roadway/parking lot are different. Places with high vegetation cover have the effect of 
reducing pollutant concentrations, while roadways and tar-roofed buildings do not. The slight 
over-estimation of pollutant concentrations at places with tar-roofed buildings might better 
represent the spatial pattern of pollutant concentrations at those places. Compared to open land 
use, the degree of greenness or soil brightness from remote sensed data should be more 
accurately characterizing ground land use. Overall, we demonstrated that remote sensing derived 
data such as vegetation greenness and soil brightness can be useful model inputs that will 
improve the estimation of spatial variability in NO, NO2 and NOx concentrations, especially 
greenness which correlated highly with these concentrations (r = 0.40-0.50). The advantage of 
using ETM+ data for LUR is its global coverage and free access (http://landsat.gsfc.nasa.gov/). 
In locations where other spatial covariates are not readily available such as certain land use data, 
Landsat ETM+ data might provide effective surrogate measures. The model we developed here 
provides a relatively easy and feasible way to improve exposure analysis. 

   Most previous land use regression models29,132 have included population density as a 
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predictor. However, in our modeling process, population density was not included for all three 
prediction models because of high VIFs (VIF>2). Our sensitivity analyses demonstrated that if 
population density was added, the model prediction power increased only by 0.50%, 1.28% and 
0.71%, respectively, for NO, NO2 and NOx; thus, omitting population density from our LUR did 
not substantially decrease the predictive power of our models. 
 
Respiratory Health Analyses 
 We observed the most consistent and strongest positive associations for the outcome 
current wheeze and NO and NOx from local traffic as estimated by our LUR models. We 
observed stronger associations with LUR exposure metrics that estimated the influence of more 
local traffic compared to metrics from LUR models that also incorporated traffic influences from 
as far away as 11 km. This suggests that pollutants released directly in exhaust emissions with 
sharp concentration peaks close to sources (e.g., UF and associated toxics) may be most relevant 
for asthmatic symptoms such as current wheeze. Our findings are in agreement with previous 
European cross-sectional studies reporting associations between various residence- and school-
based traffic metrics and the prevalence of wheeze in children.36,40,43,67-71,74,75 They are also in 
agreement with previous studies in California, that reported higher odds of wheeze for school-
aged children residing close to freeways2 and major roads,150 and higher odds of current asthma 
(i.e., asthma episode in the previous 12 months) for school-aged children with higher levels of 
traffic (especially freeway traffic) within 150 m of homes.5  
 Since low socioeconomic status is associated with higher traffic exposures,34,90,91 residual 
confounding by low SES and associated factors (e.g., access to health care, stress, exposure to 
tobacco smoke) is a concern in studies examining spatial differences in respiratory health 
outcomes. Our findings for local traffic NO and NOx impacts on current wheeze were robust to 
adjustment for many different measures of socioeconomic status at the family- and 
neighborhood-level. We also examined differences in effect estimates across several indicators 
of neighborhood quality. Stratifying on median level of economic disadvantage, we observed 
relatively similar increases in odds of current wheeze (an approximately 40% increase per IQR 
increase in NO and NOx) in both higher and lower SES areas.  

Although we did not observe associations between O3 and current wheeze in unstratified 
analyses, an approximately 80% increase in odds of this outcome per IQR increase in peak 8-
hour O3 was observed in lower SES areas, while negative associations were observed with O3 in 
higher SES areas. This difference in effect estimates across higher versus lower income areas 
may reflect differences in children’s behaviors and resulting air pollution exposures during peak 
O3 episodes.  For example if children in higher SES areas (especially those with a doctor’s 
diagnosis of asthma or on medications for asthma) spend more time inside while children in 
lower SES areas spend more time outdoors during these warm, sunny periods. However, these 
results may also be an artifact of our very small sample size when stratifying in this manner. 
 While we observed positive associations between exposures to local traffic NO and NOx 
and doctor-diagnosed asthma, they were weaker than those observed for current wheeze. This 
might partly be due to under-diagnosis and/or under-reporting of asthma among study 
participants; 66% of subjects with current wheeze were also diagnosed asthmatics, however, as 
many as 34% of children with wheeze had not been not diagnosed as asthmatics, according to 
PCG responses. Differences in access to health care and physician practices in diagnosing 
asthma across communities may be factors affecting our results.151  Low income children and 
children of foreign born PCGs were more likely to be highly exposed to traffic pollution based 
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on our LUR model estimates, but were less likely to have been diagnosed with asthma. Thus, 
even though we controlled for confounding due to income, PCG education level, PCG birth 
place, insurance status, and whether children had a usual source of sick care in our analyses, this 
approach does not help to reduce outcome misclassification, especially differential 
misclassification due to more highly exposed, low SES, immigrant children being less likely to 
receive high quality medical care that may result in the diagnosis and treatment of asthma. Thus, 
our results for self-reported physician diagnoses of asthma and treatment received for asthma 
may be biased towards the null of no association for traffic-related exposures. Even though lower 
income and foreign born PCGs were also less likely to report that their children currently 
suffered from wheeze, positive associations between LUR NO and NOx and wheeze still 
emerged in on our models, perhaps because the reporting of this asthma symptom was less 
misclassified than the medical care system-dependent outcomes. Furthermore, when we stratified 
on median census-tract level economic disadvantage, associations between more local traffic NO 
and NOx and asthma of similar magnitude as for current wheeze emerged for children residing in 
higher SES areas, again suggesting that under-diagnosis and/or under-reporting may be an 
important bias impacting our results for children in lower SES areas.  
 Another potential explanation for the weaker associations we observed between LUR 
NO, NO2 and NOx exposure measures and doctor-diagnosed asthma in comparison to 
associations observed for current wheeze, may be additional misclassification of the relevant 
exposure period for this outcome. We constructed annual average exposure estimates based on 
the child’s current home, as well as weighting for all homes the child resided in 1, 2 and 5 years 
prior to the interview. A more relevant exposure estimate, however, may be early life or life-time 
exposures that would require weighting LUR metrics for homes the child resided in from birth to 
the age of asthma diagnosis. We did observe slightly higher point estimates for associations 
between 5-year average exposures to local traffic NO and NOx and diagnosed asthma in our 
models, suggesting that longer-term exposure (or perhaps exposure during early life) may be 
more relevant for this outcome. Unfortunately, the number of children for who we had lifetime 
residential histories was too small for meaningful statistical analyses of associations between 
lifetime air pollution exposures and doctor-diagnosed asthma. 
 Stratifying on median level of economic disadvantage, we observed positive associations 
in lower SES areas but negative associations in higher SES areas between peak O3 and doctor-
diagnosed asthma, similar to stratified results for current wheeze. Again, this may be due to 
differences in children’s behavior patterns during peak O3 episodes. The relatively strong 
negative association with peak O3 in higher SES areas may reflect avoidance of these air 
pollution exposures by children with asthma. For children in lower SES areas, we observed an 
approximately 50% increase in odds of asthma per IQR increase in peak O3. These weaker 
associations in comparison to those for current wheeze in higher SES areas may be due to more 
under-diagnosis or under-reporting of asthma for these children, as discussed above. Under-
diagnosis and under-reporting may also explain why associations between asthma and more local 
traffic NO and NOx only were seen for children living in higher SES areas.  
 Associations between medication use for asthma and wheeze and LUR exposure metrics 
followed a similar pattern as associations for current wheeze, but were weaker. As already 
mentioned above, similar to doctor-diagnosed asthma, our effect estimates for this outcome may 
be impacted by differential access to health care and/or differences in physician practices across 
communities. Again, analyses stratified on census-tract level economic disadvantage indicated 
associations between local traffic LUR exposure metrics and medication use for asthma and 
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wheeze similar in magnitude to the outcome current wheeze (approximately 40% increases per 
IQR increase in pollution) in higher SES areas, with much lower and less precisely estimated 
associations in lower SES areas, suggesting under-diagnosis and/or under-reporting is impacting 
results for these children. Similar to current wheeze and doctor-diagnosed asthma, we observed 
negative associations between peak O3 and medication use for asthma or wheeze in higher SES 
areas but two-fold increases in this outcome with increases in peak O3 in lower SES areas, again 
potentially reflecting differences in O3 exposure patterns due to avoidance behavior among 
asthmatics living in higher SES areas as discussed above.  
 Unlike the majority of previous European studies reporting associations between traffic 
related air pollution and allergic sensitization as assessed by questionnaire, skin prick tests and/or 
levels of IgE antibodies to specific allergens,26,32,40,67-69,82,84 we did not observe associations 
between any of our air pollution exposure metrics and odds of an allergy symptom as assessed by 
the ISAAC questionnaire definition “sneezing, or runny/blocked nose apart from colds in the 
previous 12 months”. Reasons for this null finding could include exposure misclassification as 
many of the previous European reporting positive associations for allergic sensitization focused 
on early life exposures to traffic.26,32,82,84  Outcome misclassification could be another 
explanation, as most of the previous studies also performed skin prick tests and/or measured 
levels of specific IgE antibodies in blood in addition to collecting questionnaire reports of 
allergic symptoms. Finally, reporting of these symptoms was highly related to income in L.A. 
FANS-2 participants, with children from low income families having the least symptoms 
reported, suggesting that under-and or mis-reporting may be impacting our estimates. 

As part of the TRAPCA study, Brauer et al.85 reported positive associations between 
LUR measures of traffic exposure (PM2.5, soot and NO2) at birth residences and odds of doctor-
diagnosed ear infections in the first two years of life. We did not find similar associations 
between any of our air pollution exposure metrics and odds of more than three doctor-diagnosed 
ear infections in L.A. FANS-2 children. Since most ear infections occur prior to age two,85 early 
life exposures may provide more relevant  exposure metrics for this outcome than exposures 
averaged over the years prior to the L.A. FANS-2 interview. Also, similar to the outcome 
sneezing, or runny/blocked nose apart from colds in the previous year, low income children were 
less likely reported as having doctor-diagnosed ear infections than high income children, 
suggesting that systemic under-diagnosis and under-reporting of these outcomes may also be 
impacting these estimates.  
 
Lung Function Analyses 
 Several studies from Europe have reported decrements in cross-sectional measures of 
lung function in children more highly exposed to traffic pollution.36-39,41,44,49 Yet not all findings 
have been consistent.40,42,43  Here, we observed negative associations between LUR estimates of 
traffic exposure and lung function in boys with one or more acceptable spirometry curves. We 
estimated 70-100 mL reductions in the volume measures FEV1 and FVC and 60-100 mL/s 
reductions in the flow measures FEF75 and FEF25-75 with IQR increases in the traffic markers 
NO, NO2 and NOx. Increases in PM2.5 were also associated with approximately 50 mL reductions 
in FEV1 and FVC and 60-90 mL/s reductions in FEF75 and FEF25-75 (per 2.4 µg/m3 increase). 
Although similar magnitude reductions in PEF were observed, effect estimates were very 
imprecise and not statistically significant.  The stronger associations observed when 
incorporating school concentrations into exposure estimates likely is due to restricting analyses 
to older children with higher quality spirometry measurements (since exposure estimates 
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incorporating homes only versus homes and schools were very highly correlated, r>0.9). 
Associations between the more local traffic LUR estimates and lung function were much weaker 
than associations with the final, optimized model LUR estimates (25-65% lower in magnitude 
and not statistically significant).  
 In general, we estimated similar magnitude reductions in lung function with increasing 
exposure to LUR estimates of traffic pollution and PM2.5 when restricting analyses to boys with 
three acceptable and reproducible curves, but effect estimates were more imprecise due to the 
smaller sample size available (221 boys versus 486 boys with one or more acceptable curves).  
Also, associations between LUR estimates of NO2 and kriged estimates of PM2.5 and FEF75 and 
FEF25-75 remained when limiting to boys with three or more curves while associations with NO 
and NOx were reduced or disappeared.  
 For girls with one or more acceptable curves, we estimated weaker effects between IQR 
increases in LUR traffic exposure metrics and measures of lung volume compared to boys (40-80 
mL reductions in FEV1 and no associations with FVC) but much greater reductions with 
measures of expiratory flow (300-350 mL/s reductions in PEF and 200-300 mL/s reductions in 
FEF25-75). Again, the stronger associations observed for exposure metrics incorporating homes 
and schools likely is due to restricting analyses to older children with more accurate spirometry 
measures.  
 Similar to our findings, other cross-sectional studies have also reported stronger air 
pollution impacts on expiratory flow versus volume measures of lung function, and in girls 
versus boys. Roselund et al.44 reported reductions of 62 mL/s and 85 mL/s in FEF25-75 and PEF, 
respectively, per 10 µg/m3 increase in LUR-modeled NO2 (based on current home locations) in a 
study of children ages 9-10 years in Rome, and the effect of FEF25-75 was isolated to girls. 
Oftedal et al.49 reported approximately 100 mL/s decreases in PEF, FEF25 and FEF50 per 
interquartile increases in NO2, PM10 and PM2.5 for 9-10 year old girls living in Oslo, Norway. 
Decrements in volume measures were not observed, and decrements in boys were half as strong 
as in girls and did not reach statistical significance. Exposures measures were derived from 
emissions and air dispersion models and included both local and background source 
contributions. Interestingly, both life-time and early life (i.e., first year) exposures were found to 
be important. Here, we observed the strongest decrements in PEF, FEF75 and FEF25-75 with 
increasing NO, NO2 and NOx levels when averaging LUR metrics over all homes during five 
years prior to interview, with estimates gradually attenuating for shorter time periods (2-years 
and 1-year prior to interview). This observation may also suggest that earlier life and long-term 
exposure to traffic pollutants are most important for lowering lung function, at least in girls. We 
did not observe strong differences in effect estimates across exposure averaging periods for boys. 
Unfortunately, the number of children for who we had lifetime residential histories was too small 
for meaningful statistical analyses of associations between lifetime air pollution exposures and 
lung function. Furthermore, decrements in lung function with increased exposure to LUR-
modeled NO, NO2 and NOx were only observed in analyses including girls with one or more 
acceptable curves, and were not seen when restricting to the sample of girls with three acceptable 
and reproducible curves for whom lung function values are more accurate and precise. 
 In the first cross-sectional analysis of ambient air pollution and lung function in the 
Children’s Health Study (CHS), decrements in lung function with increasing air pollution were 
also isolated to girls. Specifically decrements in volume measures (FEV1 and FVC) were 
observed with increasing exposure to PM10, PM2.5, and NO2 as measured by central monitoring 
sites in each community studied, and these effects appeared strongest in girls spending more time 
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outdoors, while observed decrements in flow measures (PEF and FEF25-75) did not differ much 
with the girls’ time-activity patterns (i.e., more time spent out- versus indoors). The strongest 
effect reported across all pollutants and endpoints was a 250 mL/s decrement in PEF per 40 ppb 
increase in peak O3 in girls.  We estimated a greater decrement in PEF per an increase in peak O3 
(~400 mL/s per 30 ppb O3) when using a kriging model to extrapolate levels from ambient 
stations to the LA Basin; however, our estimates were less precise due to the smaller sample size 
of the L.A. FANS cohort. Adjusting for measures of neighborhood social support appeared 
important; i.e.our effect estimate sizes increased with adjustment.  The University of California 
Berkeley Ozone Studies also reported negative effects of life-time exposure to O3 on lung 
expiratory flows, but not volumes, in college freshman ages 17-21 years.15,16 On the other hand, 
reductions in lung function growth between ages 10-18 years were not observed in the CHS in 
those more highly exposed to O3.53-55 Here, we did not observe differences in O3 effect estimates 
for PEF for the various time period evaluated (current home, 1-year, 2-years and 5-years prior to 
interview estimates).  

Peak expiratory flow (PEF) rate, FEF75, and FEF25-75 are considered markers of small 
airway function, converse to the volume measures that provide information on the larger, central 
airways.49,56 Studies of smoking impacts on lung function and some previous studies of air 
pollution indicate stronger impacts on flow rather than volume measures of lung function.49 
These findings may be indicative of the biologic impact of small particles (in UF size range) in 
cigarette smoke and traffic exhaust which can reach the small, peripheral airways and alveoli.  
Thus, flow measures may be more sensitive indicators of air pollution impacts on lung health and 
reflect preclinical structural changes before the larger airways are affected.56 
 As mentioned previously, decrements in lung function with increased exposure to LUR-
modeled NO, NO2 and NOx were only observed in analyses including girls with one or more 
acceptable curves, and were not seen when restricting to girls with three acceptable and 
reproducible curves for whom values are more accurate and precise. Similarly, estimated 
decrements in lung function with increases in NO, NO2 and NOx were more imprecisely 
estimated and not statistically significant when restricting to boys with three acceptable and 
reproducible curves. However, negative associations between exposure to peak daily O3 and PEF 
in girls were much stronger for the subgroup with three curves.  Overall, children with three 
acceptable and reproducible curves were more likely to come from families with higher incomes, 
where the PCG had more education and was U.S. born, and from families that reported higher 
levels of neighborhood safety and support. These children also had greater variability in 
exposure to O3 and slightly lower mean exposure values and narrower interquartile ranges for 
NO, NO2 and NOx levels based on LUR modeling. Thus, our estimates of associations between 
traffic pollutants and lung function parameters for children with three acceptable and 
reproducible curves may be affected, in part, by the differential loss of individuals who were 
more highly exposed to traffic. The subset of children with valid lung function data tended to be 
a higher socioeconomic status, suburban population that is more highly exposed to regionally 
distributed pollutants versus local traffic pollutants in the urban core of LA. Our analyses may 
also be impacted by quality of the spirometry measurements: we only had available one cross-
sectional measure of lung function taken in homes during a study field visit by multiple 
interviewers rather than at schools or at clinics where differences in technician and test 
procedures are more tightly controllable and the test results less influenced by such variability in 
the field. Suggestions of greater air pollution impacts on lung function in higher versus lower 
SES areas based on analyses stratified on median census tract-level economic disadvantage, 
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might reflect in part better quality spirometry measurements in those areas, but again, sample 
sizes for these analyses were very small, and 95% CIs for point estimates across strata were 
widely overlapping. Furthermore, there was insufficient sample size for stratified analyses 
restricing to children with three acceptable and reproducible curves. Originally, the L.A. FANS-2 
study planned to enroll approximately 4,000 children (all of the L.A. FANS-1 children plus a 
sample of new entrants into each neighborhood). Despite extending data collection by 
approximately one and a half years, the total number of L.A. FANS-2 child participants was 
approximately 35% of the originally planned enrollment number. This was most likely due to the 
longitudinal nature of the study and the unanticipated additional efforts required to trace and re-
enroll L.A. FANS-1 study participants after approximately 5 years without any study contact in a 
highly mobile community of mostly low SES and immigrant parents. Also, the extensive 
collection of physical measurements newly included in the L.A. FANS-2 protocol added 
logistical complexities to implement the survey and further increased participant burden. Finally, 
as illustrated by findings from the CHS, consideration of time-activity patterns (i.e., time spent 
outdoors) may be important in estimating air pollution impacts on lung function, especially for 
the large airway measures of FEV1 and FVC, and unfortunately detailed time-activity 
information was not collected as part of L.A. FANS-2. 
 Although several studies have silmiliarly reported greater air pollution impacts on girls 
compared boys, reasons for differential suspectibility are currently unknown.49 One possible 
explanation is differences in growth during adolescence, with girls achieving their full height and 
maximum lung size considerably earlier than boys. However, whether this difference in the 
growth process affects susceptibility to air pollution is not known.152 As girls enter the 
reproductive period of their life, and airways become subject to cyclical fluctuation of their sex 
hormones, they exhibit premenstrual changes including increases in airway responsiveness to 
methacholine, in chemosensitivity, in ventilatory demands, especially on exercise and decreases 
in spirometric lung function.153  Whether these hormonal differences affect defense mechanisms 
and/or response to air pollutants is not known. Differences in the response to cigarette smoking 
also have been observed, with larger effects seen in young women.154 Differences in airway 
susceptibility to air pollution in girls compared to boys is an area that requires further 
investigation. 
 
Study Strengths and Limitations 

One strength of this study was the use of a large neighborhood-level campaign of air 
monitoring and geostatistical modeling to estimate spatial variability in exposures to traffic-
related air pollution on a small spatial scale. The use of LUR modeling likely resulted in traffic 
air pollution exposure estimates with less misclassification than estimates based on pollutant 
measurements at existing government air monitors, 28-30 a method which has been used in most 
previous epidemiologic studies of respiratory health impacts. The latter approach assumes 
concentrations of air pollutants are relatively homogenous over large geographic areas, which is 
particularly problematic for traffic exhaust pollutants known to have a more heterogeneous 
spatial distribution with peaks near roadway sources.8-13  Nonetheless, our estimates are still 
biased to some extent by exposure misclassification since although the LUR model provides 
estimates of air pollution levels outside of children’s homes and schools, it does not account for 
variability in personal exposures due to differences in time-activity patterns (time spent outdoors, 
indoors and in vehicles) and levels of air pollutants in indoor and in-vehicle microenvironments. 
It has been shown that exposures to traffic exhaust particles in the UF size range are much higher 
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while driving in vehicles.155-157 Unfortunately, we did not have detailed time-activity information 
for children to take into account such exposures. As discussed previously, the differences in O3 
effects estimates for wheeze and asthma in higher compared to lower SES neighborhoods could 
in part reflect important differences in time-activity patterns and resulting exposures across 
neighborhoods, but may also be reflective of differential access to asthma care and diagnosis and 
treatment as well. Additionally, the LUR model was built relying on measurements of NO, NO2 
and NOx as markers of the suite of pollutants present in exhaust emissions. Additional 
measurements would be required to determine how well such pollutants reflect spatial patterns of 
and personal exposure to other pollutants of biologic interest for respiratory health such as 
ultrafine particles and PAHs. 
 Another source of error in our analysis is outcome misclassification. We relied on 
parental reports of wheeze and asthma, as discussed above. Analyses stratified on census tract- 
level economic disadvantage indicated stronger associations between wheeze and asthma and 
traffic air pollution in higher SES areas. This may be due in part to better reporting of these 
outcomes (i.e. less outcome misclassification) in such areas. Odd ratios for current wheeze, 
which was asked of all parents whether or not the child had been diagnosed with asthma, were 
similar in lower and higher SES areas, further demonstrating how access to health care and 
differential reporting might impact population-based studies of traffic impacts on asthma 
symptoms. 
 The L.A. FANS-2 survey included collection of detailed information on perceptions of 
neighborhood quality, including safety, cohesion and support, allowing us to take such factors 
into consideration in our analyses. We found adjustment for such factors was important in our 
analyses of traffic air pollution impacts on wheeze and asthma, as including such factors in 
statistical models increased estimated associations. This was because odds of reporting the 
outcomes of interest were greater in more cohesive, supportive, safe and higher SES 
neighorboods, while on the other hand, traffic air pollution was lower in such areas. 
Unfortunately, the length and complexity of the L.A. FANS-2 survey in combination with the 
collection of physiological measures, may have reduced participation and increased logistical 
complexity resulting in the lower than expected number of subjects who completed the study, as 
discussed previously. Thus, we had very limited statistical power to examine differences in effect 
measures after stratifying on neighborhood quality factors, especially for analyses of lung 
function, where sample sizes were small after stratifying on gender and restricting to those 
children with 3 acceptable curves (for example, there were 221 boys and 174 girls with three 
acceptable and reproducible curves). This highlights the importance of balancing data collection 
against study participation and logistical practicalities in future population-based studies.  
 
VI. SUMMARY AND CONCLUSIONS   
 There is a growing literature linking exposure to traffic exhaust pollutants to adverse 
respiratory health in children. A limited number of studies have used advanced GIS modeling 
techniques to estimate exposure to traffic pollutants on a fine spatial scale, versus relying on 
ambient monitoring data or cruder traffic metrics, such as levels of traffic surrounding homes 
and schools. Here we developed a land use regression (LUR) model for the Los Angeles Basin of 
Southern California. Novel aspects of this LUR modeling effort compared to previously 
published work include: (1) use of a large number of sampling sites (~200) for simultaneous 
passive measurement of NO, NO2 and NOx over a large and complex geographic region, (2) use 
of  “A Distance Decay REgression Selection Strategy” (ADDRESS) to explore importance of 
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geographic features within many different size buffers and development of spatial models highly 
predictive of measured concentrations, and (3) use of remote sensing data to provide additional 
information on geographic distribution of traffic sources and improve LUR model predictions. 
Our final LUR models explained 81%, 86% and 85% of the variation in NO, NO2 and NOx 
concentrations, respectively, higher prediction powers than a large majority of previously 
published LUR surfaces.132-134  LUR model results indicated traffic on highways and major roads 
as far away as 11 km from measurement sites still had important impacts on measured NOx 
concentrations, a much greater spatial extent than previously reported in the literature.7 Although 
incorporating the influence of traffic at farther distances improved prediction ability for NO, NO2 
and NOx, we generated a separate set of “more local traffic” LUR models that excluded traffic at 
distances greater than 5000 m (resulting R2 values were 0.64, 0.78 and 0.68, respectively). It is 
currently unknown how well LUR models built on NOx measurements predict other pollutants 
released directly in motor vehicle exhaust that are also of biologic interest. In L.A., 
concentrations of UF particles have been shown to decrease exponentially with distance from 
freeways, reaching background concentrations within approximately 150 meters.8-13 Thus, it may 
be that the “more local traffic” LUR models we developed here provide better surrogate 
estimates of exposure for fresh vehicle exhaust and UF and associated toxics; additional 
measurement data are needed to examine this hypothesis further. We also generated kriged 
exposure surfaces for peak daily O3 and PM2.5 to examine the importance of exposure to more 
regionally distributed background pollutants on respiratory health in children.  
 Using the LUR and kriged model surfaces to estimate exposures, we evaluated 
associations between air pollution and respiratory health in the 1,387 children who participated 
in L.A. FANS-2. Based on our models, children more highly exposed to traffic pollution as 
estimated by interquartile increases in “more local traffic” LUR model estimates for NO, NO2 
and NOx were approximately 30-40% more likely to report wheeze in the past 12 months. These 
estimates were robust to adjustment for many different family- and neighborhood-level SES 
factors. The stronger associations observed between exposure metrics from the more local traffic 
versus those from the final, optimized LUR models suggest pollutants released directly in 
exhaust emissions and with sharp concentration peaks close to sources (e.g., UF and associated 
toxics) may be the most relevant for current wheeze symptoms. We observed weaker and more 
marginal 15% increases in odds of medication use for asthma and wheeze in the past year and 
doctor-diagnosed asthma per interquartile increase in local traffic NO, NO2 and NOx. However, 
when we stratified analyses on median census tract-level economic disadvantage, odds of both 
asthma outcomes increased by 40% per IQR increase in traffic pollution, similar to results for 
current wheeze, but in higher SES areas only. While we included health insurance status, a usual 
source of sick care and other family SES characteristics into our models to adjust for 
confounding by these covariates, misclassification of outcome may still bias our estimates due to 
differential access to health care and differences in diagnostic and treatment practices for asthma 
across communities. The stronger associations with traffic pollution observed in higher SES 
areas may thus in part reflect differential access to health care and resulting differences in 
diagnosis and reporting in higher compared to lower SES communities. Stratified analyses 
indicated 80-100% increases in current wheeze and medication use for asthma and wheeze per 
IQR increases in peak 8-hour O3, but only in lower SES areas, while null or inverse associations 
between peak O3 and these outcomes were observed for children living in higher SES areas. This 
may reflect differences in children’s behaviors (e.g., time spent outdoors) and resulting 
exposures during pollution epispodes or may be an artifact of our very small sample size when 
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stratifying in this manner. The weaker (50%) increases in odds of doctor-diagnosed asthma with 
increases in peak O3 estimated for children living in lower SES areas may reflect bias due to 
exposure misclassification since lifetime exposure averages from birth to date of asthma 
diagnosis may be more relevant for doctor-diagnosed asthma, as opposed to the averages over 
shorter time periods prior to interview we employed. Unfortunately the number of asthmatic 
children for whom we had life-time residential histories was too small to perform meaningful 
statistical analyses of these exposure periods.   
 Similar to previous cross-sectional studies in Europe and the U.S., we observed 
reductions in lung function with increasing exposure to traffic pollution, but our results differed 
substantially between girls and boys and for children with lower versus higher quality spirometry 
curves.  In boys, we estimated 70-100 mL reductions in lung volume and 60-100 mL/s 
decrements in expiratory flow per interquartile increase in final, optimized model LUR estimates 
of NO, NO2 and NOx based on the current home (associations for the other averaging periods we 
evaluated were similar).. Slightly lower associations were observed for PM2.5 exposures (40-50 
mL reductions in volume and 60-90 mL/s reductions in flow per IQR increase). However, when 
restricting analyses to boys with three acceptable and reproducible curves, negative associations 
were more imprecisely estimated and in general did not reach statistical significance, except for 
those between IQR increases in PM2.5 and FEF75 and FEF25-75. In girls, we estimated 40-80 mL 
reductions in FEV1 with increasing exposure to LUR-estimates of NO, NO2 and NOx averaged 
over the 5 years prior to interview, but no associations with FVC. However, stronger associations 
between traffic pollution and measures of expiratory flow were observed in girls than in boys 
(300-350 mL/s reductions in PEF mL/s and 200-300 reductions in FEF25-75 per IQR increase in 
final, optimized model LUR estimates of NO, NO2 and NOx). However, these effects were 
observed only when considering all girls with one or more acceptable spirometry curve and not 
seen in the group with three acceptable and reproducible curves. This may be due to the smaller 
sample size available and/or the characteristics of the select group with three curves available 
(i.e., higher SES with higher exposure to O3 and lower exposure to traffic pollutants). Similar to 
previous U.S. cross-sectional studies,14-16 we also observed reductions in PEF in girls more 
highly exposed to peak daily O3 (~100 mL/s decrements and ~400 mL/s decrements per 30 ppb 
increase in O3 for girls with one or more acceptable curves and three acceptable and reproducible 
curves, respectively) and again these estimated effects were robust to adjustment for family- and 
neighborhood-level measures of SES. Similar to previous literature, this suggests important 
differences in the biological impact of air pollution on lung health in boys versus girls. 
Differences in susceptibility to air pollution may be due to differences in growth patterns or due 
to hormonal differences, but additional research is needed to uncover possible underlying 
biological mechanisms.  
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Figure 1. Ranking of L.A. County Census Tracts by L.A. FANS Poverty definition 
 

 
Figure 2. Spatial analysis domain for sampling design
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Figure 4. Los Angeles Basin PM2.5 monitoring sites 
 
 

Figure 3. Sampler inside rain shelter
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Figure 5. The Los Angeles Basin O3 monitoring sites  
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Figure 6a-6d. Distance decay curves of correlations between selected spatial covariates and measured air pollution concentrations 
(6a for traffic volumes - total vehicle miles traveled, 6b for NO, 6c for NO2 and 6d for NOx
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Figure 7. Semivariograms of NO and NO2 based on measurements from the 201 monitoring sites
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Figure 8. Tasseled-cap greenness (8a) and soil brightness (8b) 
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Figure 9. Distance decay of NO concentrations further away from highways (A1 and A2) based on 201 monitoring sites in the 
LA metropolitan area 
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Figure 10. Distance decay of NO2 concentrations further away from highways (A1 and A2) based on 201 monitoring sites in 
the LA metropolitan area 
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Figure 11. Model predictions of natural log-transformed NO, NO2 and NOx (11a,11b and 11c) and corresponding cross-
validation results (11d, 11e and 11f) 
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Figure 12. Model prediction surfaces of NO (12a), NO2 (12b, 12c) and NOx (12d) through an ADDRESS selection process (12b with 
and 12c without buffer distance within 11 km)
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Figure 13. PM2.5 surface through kriging for the LA Basin 
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Figure 14. O3 ordinary kriging surface for the LA Basin 
 
 

 
Figure 15. O3 ordinary kriging surface for the LA Basin (close up of urban core area) 
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Table 1. South Coast Air Quality Management District (SCAQMD) air monitoring stations 
where Ogawa samplers were co-located during each monitoring session. 
LOCATION ADDRESS CARB ID AIRS SITE ID 
Azusa  803 N. Loren Ave., Azusa, CA 91702 2484 60370002 
Burbank  228 W. Palm Ave., Burbank, CA 91502 2492 60371002 
Downtown Los Angeles 1630 N Main St, Los Angeles, CA 90012 2899 60371103 
Glendora  840 E Laurel Ave, Glendora, CA 91741 2849 60370016 

Hawthorne  
7201 W Westchester Parkway, Los Angeles 
CA 90045 3683 60375005 

La Habra 621 W Lambert Rd, La Habra, CA 90631 2249 60595001 

Lynwood  
11220 Long Beach Blvd. Lynwood, CA 
90262 2583 60371301 

North Long Beach  3648 N. Long Beach Blvd. Long Beach 90807 2429 60374002 
Pasadena  752 S. Wilson Ave. Pasadera, CA 91106 2160 60372005 

Pico Rivera  
4144 San Gabriel River Parkway, Pico Rivera, 
CA 90660 3693 60371602 

Pomona  924 N. Garey Ave. Pomona, CA 91767 2898 60371701 
Reseda 18330 Gault St. Reseda, CA 91335  2420 60371201 

Santa Clarita 
22224 Placerita Canyon Road, Santa Clarita, 
CA 91321 3502 60376012 

South Long Beach  
1305 East Pacific Coast Highway, Long 
Beach, CA 90806 3679 60374004 

West Los Angeles 
11301 Wilshire Blvd., Los Angeles, CA 
90073 2494 60370113 

 
 
 
Table 2. Traffic statistics for measured road segments in LA and the proportion of roads 
covered with measurements. 

Traffic volume measurements (AADT) 
TeleAtlas Dynamap 

Data Coverage Road 
category* 

# roads Minimum Maximum Mean Median Std Dev # roads % measured 
A1 1,658 3,100 190,000 92,969 104,000 39,860 24,508 6.77 
A2 799 1,885 76,000 21,458 18,750 10,757 9,004 8.87 
A3 8,045 21 114,622 15,848 13,500 11,120 124,391 6.47 
A4 7,954 1 129,500 4,611 2,383 6,093 500,302 1.59 
A5 3 564 2,100 1,093 614 873 9,105 0.03 
A6 40 556 148,500 40,407 17,000 45,863 37,866 0.11 
A7 5 488 26,950 9,501 6,780 11,008 34,871 0.01 

Total: 18,504      740,047 2.50 
*A1: Primary highway with limited access; A2: primary road without limited access; A3: secondary and connecting 
road; A4: local, neighborhood and rural road; A5: vehicular trail; A6: road access ramp; A7: road as other 
thoroughfare. 
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Table 3. L.A. FANS Wave-2 Child Respiratory Health Questions (asked of PCGs) 
Has a doctor or other health professional ever told you that (child’s name) has asthma (Yes, No)?  
How old was (child’s name) when the doctor first told you that (he/she) had asthma? (Age in months or years)  
Asked of those reporting doctor-diagnosed asthma 
During the past 12 months (or since (child’s name) was born if less than 1 year old), has your child ever had 
wheezing or whistling in the chest (Yes, No)? 
Let me ask you something else about the past 12 months (or the time since (child’s name was born if less than 1 year 
old). In an average week how often has (he/she) woken up because (he/she) was wheezing (Never woken with 
wheezing; Less than one night per week; One or more nights per week)?   
Asked of those reporting wheezing in past 12 months 
During the past 12 months, has wheezing ever been severe enough to limit (child’s name)’s speech to only one or 
two words at a time between breaths (Yes, No)? 
Asked of those reporting wheezing in past 12 months and child is at least one year of age 
During the past 12 months (or since (child’s name) was born if less than 1 year old), has (child’s name) used any 
medicines, pills, puffers or other medication for wheezing or asthma (Yes, No)? 
During the past 12 months (or since (child’s name) was born if less than 1 year old), has (he/she) had a problem with 
sneezing, or a runny or blocked nose when he/she DID NOT have a cold or the flu (Yes, No)? 
Has your doctor or health professional ever said that (child’s name) had more than 3 ear infections in a year (Yes, 
No)?  
 
Table 4. Basic spirometry measures and definitions127  

Spirometry measurement Abbreviation Description 
Forced Vital Capacity FVC This is the total amount of air forcibly blown out 

after full inspiration, measured in liters. 
Forced Expiratory Volume in 1 Second FEV1 This is the amount of air forcibly blown out in one 

second, measured in liters. Along with FVC it is 
considered one of the primary indicators of lung 
function. 

Peak Expiratory Flow PEF This is the speed of the air moving out of the lungs 
at the beginning of the expiration, measured in liters 
per second. 

Forced Expiratory Time FET This measures the length of the expiration in 
seconds. 

Forced Expiratory Flow at 25% of FVC 
 

FEF25 This is the flow of air measured at the time when 
25% of the entire FVC has been expelled. 

Forced Expiratory Flow at 75% of FVC FEF75 This is the flow of air measured at the time when 
75% of the entire FVC has been expelled. 

Forced Expiratory Flow between 25% 
and 75% of FVC2 

FEF25-75 This is average flow of air measured during the 
interval between the time when 25% and 75% of 
the entire FVC has been expelled. 

 (1) FEF25-75 is also called Maximum Midexpiratory Flow (MMEF) 
 
Table 5. Mean, median and range of measured NO2 and NOx at all neighborhood locations 
(including duplicates) and AQMD stations, adjusted for blanks.  NO concentrations were 
calculated as the difference between NOx and NO2 measures. 

 Mean (ppb) Median (ppb) Range (ppb) 
Sept 2006, NO2 29.2 29.6 5.4 – 42.7 
Sept 2006, NOx 58.2 57.9 8.1 – 122.8 
Sept 2006, NO 29.0 27.4 2.6 – 80.1 
Feb 2007, NO2 24.5 25.6 5.3 – 39.8 
Feb 2007, NOx 64.1 64.3 9.6 – 157.0 
Feb 2007, NO 39.6 38.6 3.0 – 117.2 
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Table 6. Model prediction results using ADDRESS model, ADDRESS model with clustering considered, and GEE model for NO, NO2 and NOx. 
ADDRESS model* ADDRESS model with clustering** GEE model*** Pollutant Variable 

Coef. Std. Err. t P>|t| VIF* Coef. Std. Err. t P>|t| Coef. Std. Err. t P>|t| 
Intercept -2.6407240 0.654861 -4.03 0.000  -2.6407240 0.792661 -3.33 0.001 -2.6407240 0.634952 -4.16 0.000 
TeleAtlas traffic highway and major 
roads (11000 m) 0.00000003 0.000000 11.93 0.000 1.35 0.00000003 0.000000 10.58 0.000 0.00000003 0.000000 12.30 0.000 
TeleAtlas traffic all roads (400 m) 0.00000210 0.000000 6.75 0.000 1.27 0.00000210 0.000000 5.91 0.000 0.00000210 0.000000 6.96 0.000 

Distance to truck routes (m) -0.00003880 0.000013 -3.06 0.003 1.49 
-

0.00003880 0.000014 -2.87 0.005 -0.00003880 0.000012 -3.15 0.002 
Major road (100 m) 0.00053750 0.000143 3.77 0.000 1.13 0.00053750 0.000178 3.01 0.004 0.00053750 0.000138 3.89 0.000 
Industrial (2700 m) 0.00036130 0.000084 4.29 0.000 1.20 0.00036130 0.000089 4.08 0.000 0.00036130 0.000082 4.42 0.000 
Commercial (1200 m) 0.00277730 0.000533 5.21 0.000 1.19 0.00277730 0.000514 5.40 0.000 0.00277730 0.000517 5.37 0.000 
Soil brightness (700 m) 0.01005310 0.001727 5.82 0.000 1.32 0.01005310 0.001935 5.20 0.000 0.01005310 0.001674 6.00 0.000 
X coordinate 0.00000660 0.000001 5.76 0.000 1.09 0.00000660 0.000001 4.80 0.000 0.00000660 0.000001 5.94 0.000 
Open (100 m) -0.1542625 0.049998 -3.09 0.002 1.20 -0.1542625 0.047074 -3.28 0.002 -0.1542625 0.048478 -3.18 0.001 

6a. 
NO 

R2 (p) | R2 (p)**** 0.81 (< 0.0001) | 0.92 (< 0.0001) 0.81 (< 0.0001)         
Intercept -11.282530 2.443303 -4.62 0.000  -11.282530 3.725334 -3.03 0.003 -11.2825300 2.369021 -4.76 0.000 
TeleAtlas traffic highway and major 
roads (11000 m) 0.00000001 0.000000 9.72 0.000 1.44 0.00000001 0.000000 7.23 0.000 0.00000001 0.000000 10.03 0.000 
TeleAtlas traffic all roads (400 m) 0.00000072 0.000000 5.26 0.000 1.28 0.00000072 0.000000 4.04 0.000 0.00000072 0.000000 5.43 0.000 

Distance to truck routes (m) -0.0000439 0.000006 -7.90 0.000 1.49 
-

0.00004390 0.000014 -3.04 0.003 -0.00004390 0.000005 -8.15 0.000 
Major road (100) 0.00018990 0.000063 3.01 0.003 1.15 0.00018990 0.000070 2.72 0.008 0.00018990 0.000061 3.11 0.002 
Local road (1400) 0.00000234 0.000001 2.82 0.005 1.56 0.00000234 0.000001 2.73 0.008 0.00000234 0.000001 2.91 0.004 
Industrial (1700 m) 0.00059240 0.000096 6.16 0.000 1.36 0.00059240 0.000145 4.10 0.000 0.00059240 0.000093 6.35 0.000 
Commercial (1000 m) 0.00261960 0.000308 8.50 0.000 1.16 0.00261960 0.000376 6.96 0.000 0.00261960 0.000299 8.77 0.000 
X coordinate (m) 0.00000515 0.000001 10.11 0.000 1.12 0.00000515 0.000001 7.38 0.000 0.00000515 0.000000 10.43 0.000 
Y coordinate (m) 0.00000316 0.000001 4.98 0.000 1.20 0.00000316 0.000001 3.26 0.002 0.00000316 0.000001 5.14 0.000 

6b.  
NO2 

R2 (p) | R2 (p) 0.86 (< 0.0001) | 0.87 (< 0.0001) 0.86 (< 0.0001)         
Intercept -0.0590325 0.429163 -0.14 0.891   -0.0590325 0.543035 -0.11 0.914 -0.05903250 0.417438 -0.14 0.888 
TeleAtlas traffic highway and major 
roads (11000 m) 0.00000002 0.000000 13.13 0.000 1.30 0.00000002 0.000000 10.83 0.000 0.00000002 0.000000 13.5 0.000 
TeleAtlas traffic all roads (400 m) 0.00000144 0.000000 7.11 0.000 1.27 0.00000144 0.000000 5.20 0.000 0.00000144 0.000000 7.31 0.000 
TeleAtlas traffic major road (100 m) 0.00002710 0.000007 3.92 0.000 1.14 0.00002710 0.000008 3.22 0.002 0.00002710 0.000007 4.03 0.000 
Distance to truck routes (m) -0.0000450 0.000008 -5.47 0.000 1.47 -0.0000450 0.000011 -3.94 0.000 -0.0000450 0.000008 -5.63 0.000 
Industrial (2700 m) 0.00029010 0.000054 5.38 0.000 1.16 0.00029010 0.000070 4.15 0.000 0.00029010 0.000053 5.53 0.000 
Commercial (1000 m) 0.00328070 0.000450 7.29 0.000 1.12 0.00328070 0.000488 6.72 0.000 0.00328070 0.000438 7.49 0.000 
Soil brightness (1700 m) 0.00442720 0.001104 4.01 0.000 1.19 0.00442720 0.001500 2.95 0.004 0.00442720 0.001074 4.12 0.000 
X coordinate (m) 0.00000572 0.000001 7.62 0.000 1.10 0.00000572 0.000001 6.67 0.000 0.00000572 0.000001 7.83 0.000 

6c.  
NOx 

R2 (p) | R2 (p) 0.85 (< 0.0001) | 0.92 (< 0.0001) 0.85 (< 0.0001)         
* ADDRESS model: An optimized distance decay model selection strategy for our land use regression models. VIF = variance inflation factor. ** For clustering analysis, observations 
were grouped using census tract. We assumed that measurements from multiple sites within a census tract might be correlated but, across census tracts, they were uncorrelated.*** 
GEE model: Generalized estimation equation model to analyze correlated data within census tracts.**** R2 (p) | R2 (p): the left side part is for model prediction power and right side 
for cross-validation result. 
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Table 7. Description of Available Residential Air Pollution Estimates by Exposure Period for n=1,387 Children included in L.A. FANS-2 
Air Pollution Averaging period No.  (%) of 

subjects with NO, 
NO2, NOx and O3 

values 

No.  (%) of subjects 
with NO, NO2, NOx, 
O3 and PM2.5 values 

No. of subjects with LUR 
or O3 values missing for 

one or more homes1 

No. of additional subjects 
missing PM2.5 values for 

one or more homes2 

Current home 1378 (99%) 1364 (98%) 9 14 
12 months prior to interview 1311 (95%) 1301 (94%) 76 10 
24 months prior to interview 1288 (93%) 1278 (92%) 99 10 
5 years prior to interview 1223 (88%) 1213 (88%) 164 10 
(1) Subjects are missing data because: (a) one or more homes not geocoded and/or (b) homes dates (i.e., dates in each home) do not span this period or are missing data and/or 
(c) one or more homes fell outside the modeling domain. 
(2) These homes were successfully geocoded, but fell outside the modeling domain for the PM2.5 exposure surface which covered a slightly different area than the LUR and O3 
modeling domains. 
 
Table 8. Description of Available School Air Pollution Estimates by Exposure Period for n=1,387 Children included in L.A. FANS-2 
Air Pollution Averaging period No.  (%) of 

subjects with NO, 
NO2, NOx and O3 

values1 

No.  (%) of subjects 
with NO, NO2, NOx, 
O3 and PM2.5 values1 

No. of subjects with LUR 
or O3 values missing for 

one or more schools1 

No. of additional subjects 
missing PM2.5 values for 

one or more schools2 

Current school 1253 (99%) 1237 (98%) 13 16 
12 months prior to interview 1220 (96%) 1206 (95%) 46 14 
24 months prior to interview 1180 (93%) 1170 (92%) 86 10 
5 years prior to interview 912 (72%) 903 (71%) 354 9 
(1) Percentages are based on a total of 1,266 children reported as having started school. Subjects are missing data because: (a) one or more schools not geocoded and/or (b) 
school dates (i.e., dates in each school) do not span this period or are missing data and/or (c) one or more schools fell outside the modeling domain. 
(2) These schools were successfully geocoded, but fell outside the modeling domain for the PM2.5 exposure surface which covered a slightly different area than the LUR and O3 
modeling domains. 
 
Table 9. Pollutant Disributions and Pearson Correlation Coefficients for LUR, O3 and PM2.5 Annual Averages (12 months prior to 
interview) for n=1,387 Children with Questionnaire Data 

Pearson Correlation Coefficients Pollutant Median (range) IQR 
NO NO2 NOx NO-LT2 NO2-LT NOx-LT O3 

NO (ppb)1 23.5 (2.5-69.0) 10.7 1.0       
NO2 (ppb)1 23.7 (6.2-36.9) 6.1 0.86 1.0      
NOx (ppb)1 47.9 (11.3-97.5) 16.9 0.97 0.93 1.0     
NO-LT (ppb) 2 28.7 (2.8-73.5) 11.8 0.86 0.82 0.88 1.0    
NO2-LT (ppb) 25.6 (6.0-43.0) 6.1 0.75 0.95 0.83 0.85 1.0   
NOx-LT (ppb) 55.3 (6.3-126.2) 16.9 0.83 0.87 0.89 0.98 0.89 1.0  
O3 (ppb)3 71.1 (46.2-129.8) 29.1 -0.35 -0.18 -0.36 -0.27 -0.08 -0.27 1.0 
PM2.5 (µm/m3) 21.5 (8.5-23.7) 2.4 0.51 0.68 0.59 0.37 0.56 0.44 -0.36 
(1) Estimates are from the final, optimized LUR model. 
(2) “LT” stands for “more local traffic impact”; these estimates are from the LUR model excluding traffic within 11 km buffers. 
(3) Kriged O3 estimates based on 8-hour maximum concentrations. 
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Table 10. Pollutant averages (ranges) and Pearson Correlation Coefficients for LUR, O3 and PM2.5 Annual Averages (12 months prior to 
interview) - For n=890 Children with 1 or More Acceptable Spirometry Curves 

Pearson Correlation Coefficients Pollutant Median (range) IQR 
NO NO2 NOx NO-LT2 NO2-LT NOx-LT O3 

NO (ppb) 1 23.5 (2.9-60.4) 10.5 1.0       
NO2 (ppb) 1 23.7 (6.2-36.9) 5.7 0.86 1.0      
NOx (ppb) 1 48.0 (11.9-94.8) 16.5 0.97 0.93 1.0     
NO-LT (ppb) 2 28.5 (2.8-73.5) 11.4 0.85 0.82 0.88 1.0    
NO2-LT (ppb) 25.5 (6.0-43.0) 5.7 0.73 0.94 0.82 0.84 1.0   
NOx-LT (ppb) 55.4 (6.3-126.2) 16.2 0.82 0.87 0.87 0.98 0.89 1.0  
O3 (ppb)3 70.1 (46.2-129.8) 29.4 -0.40 -0.23 -0.41 -0.32 -0.12 -0.31 1.0 
PM2.5 (µm/m3) 21.5 (8.5-23.6) 2.3 0.51 0.69 0.60 0.38 0.57 0.46 -0.40 
(1) Estimates are from the final, optimized LUR model. 
(2) “LT” stands for “more local traffic impact”; these estimates are from the LUR model excluding traffic within 11 km buffers. 
(3) Kriged O3 estimates based on 8-hour maximum concentrations. 
 
 
Table 11. Pollutant averages (ranges) and Pearson Correlation Coefficients for LUR, O3 and PM2.5 Annual Averages (12 months prior to 
interview) - For n=395 Children with 3 Acceptable and Reproducible Spirometry Curves 

Pearson Correlation Coefficients Pollutant Median (range) IQR 
NO NO2 NOx NO-LT2 NO2-LT NOx-LT O3 

NO (ppb)1 23.1 (3.4-56.1) 10.6 1.0       
NO2 (ppb) 1 23.6 (6.3-36.9) 5.0 0.84 1.0      
NOx (ppb) 1 47.4 (11.9-94.8) 15.7 0.97 0.92 1.0     
NO-LT (ppb) 2 27.7 (2.8-73.5) 10.8 0.84 0.80 0.87 1.0    
NO2-LT (ppb) 25.5 (6.1-43.0) 5.0 0.70 0.93 0.80 0.83 1.0   
NOx-LT (ppb) 54.2 (6.4-126.2) 15.9 0.80 0.85 0.87 0.98 0.88 1.0  
O3 (ppb)3 71.1 (46.2-129.8) 36.5 -0.43 -0.21 -0.42 -0.31 -0.06 -0.28 1.0 
PM2.5 (µm/m3) 21.5 (8.5-23.6) 2.4 0.47 0.65 0.57 0.30 0.48 0.37 -0.35 
(1) Estimates are from the final, optimized LUR model. 
(2) “LT” stands for “more local traffic impact”; these estimates are from the LUR model excluding traffic within 11 km buffers. 
(3) Kriged O3 estimates based on 8-hour maximum concentrations. 
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Table 12. Demographic Characteristics (Number, Percent) of L.A. FANS-2 Child Participants  

 
Parameter 

All Subjects with 
Questionnaire Data 

(n=1,387) 
 

Subjects with One or 
More Acceptable 

Spirometry Curve 
(n=890) 

Subjects with 
Three Acceptable 
and Reproducible 

Spirometry Curves 
(n=395) 

 
Individual Level 
Gender 
Female 
Male 

716 (51.6) 
671 (48.4) 

 
404 (45.4) 
486 (54.6) 

174 (44.1) 
221 (55.9) 

Age (years)  
<5 
5-<10 
10-<15 
≥15 

 
100 (7.2) 
379 (27.3) 
551 (39.7) 
357 (25.7) 

 
-- 

222 (25.0) 
415 (46.6) 
253 (28.4) 

 
-- 

78 (19.8) 
190 (48.1) 
127 (32.1) 

Race/ethnicity  
Non-Hispanic White 
Hispanic 
African American 
Asian/Other 

262 (18.9) 
921 (66.4) 
105 (7.6) 
99 (7.1) 

 
165 (18.6) 
594 (66.7) 
65 (7.3) 
66 (7.4) 

73 (18.5) 
246 (62.3) 
36 (9.1) 
40 (10.1) 

Health insurance during past month  
Yes  
No 
Missing 

1187 (85.8) 
196 (14.2) 

4 

 
758 (85.3) 
131 (14.7) 

1 

335 (84.8) 
60 (15.2) 

 
Usual source of sick care 
Yes 
No 
Missing 

1298 (93.7) 
88 (6.4) 

1 

 
833 (93.7) 
56 (6.3) 

1 

370 (93.9) 
24 (6.1) 

1 
Overweight1 
Yes 
No  
Missing 

531 (44.7) 
658 (55.3) 

198 

 
411 (46.6) 
472 (53.4) 

7 

179 (45.8) 
212 (54.2) 

4 
Doctor-diagnosed asthma (ever) 
Yes 
No 

191 (13.8) 
1196 (86.2) 

 
131 (14.7) 
759 (85.3) 

67 (17.0) 
328 (83.0)  

Age of asthma diagnosis (years) – only for diagnosed 
asthmatics 
≤5 
6-<10 
10-<15 
≥15 
Missing 

125 (67.6) 
33 (17.8) 
22 (11.9) 
5 (2.7) 

6 

 
 

84 (66.1) 
25 (19.7) 
15 (11.8) 
3 (2.4) 

4 

38 (58.5) 
17 (26.2) 
9 (13.8) 
1 (1.5) 

2 
Wheeze in past 12 months 
Yes 
No 

145 (10.5) 
1242 (89.6) 

 
101 (11.4) 
789 (88.6) 

 
54 (13.7) 

341 (86.3) 
Wheeze with any night waking in past 12 months 
Yes 
No 

73 (5.3) 
1314 (94.7) 

 
52 (5.8) 

838 (94.2) 

 
29 (7.3) 

366 (92.7) 
Medication use for asthma or wheeze in past 12 
months 
Yes 
No 

162 (11.7) 
1225 (88.3) 

 
 

106 (11.9) 
784 (88.1) 

57 (14.4) 
338 (85.6) 

Sneezing or runny/block nose apart from cold in past 
12 months 
Yes 
No 
Missing 

270 (19.5) 
1116 (80.5) 

1 

 
 

179 (20.1) 
710 (79.9) 

1 

86 (21.8) 
308 (78.2) 

1 
More than 3 doctor-diagnosed ear infections in 1 year 
Yes  
No 
Missing 

140 (10.1) 
1246 (89.9) 

1 

94 (10.6) 
795 (89.4) 

 

50 (12.7) 
344 (87.3) 

1 
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Parameter 

All Subjects with 
Questionnaire Data 

(n=1,387) 
 

Subjects with One or 
More Acceptable 

Spirometry Curve 
(n=890) 

Subjects with 
Three Acceptable 
and Reproducible 

Spirometry Curves 
(n=395) 

 
Family Level 
Family Income (dollars)  
<20,000 
20,000-<35,000 
35,000-<65,000 
≥65,000 
Missing 

 
310 (24.5) 
321 (25.4) 
318 (25.2) 
315 (24.9) 

123 

 
208 (24.9) 
200 (24.0) 
209 (25.0) 
218 (26.1) 

55 

 
91 (25.0) 
70 (19.2) 
95 (26.1) 

108 (29.7) 
31 

Homeowner 
Yes 
No 
Missing 

 
548 (41.6) 
768 (58.4) 

71 

 
359 (41.9) 
497 (58.1) 

34 

 
178 (46.8) 
202 (53.2) 

15 
PCG’s education (years) 
<12  
12  
>12 
Missing 

563 (40.8) 
242 (17.5) 
576 (41.7) 

6 

 
362 (40.9) 
154 (17.4) 
369 (41.7) 

5 

148 (37.6) 
67 (17.0) 

179 (45.4) 
1 

Foreign born status of PCG 
US born 
Foreign born 

529 (38.1) 
858 (61.9) 

 
336 (37.8) 
554 (62.3) 

166 (42.0) 
229 (58.0) 

PCG current marital status 
Married or living with partner 
Unmarried/not living with partner 

 
1071 (77.2) 
316 (22.8) 

 
689 (77.4) 
201 (22.6) 

 
294 (74.4) 
101 (25.6) 

Current household smokers 
Yes 
No 
Missing 

297 (21.4) 
1088 (78.6) 

2 

 
190 (21.4) 
698 (78.6) 

2 

84 (21.3) 
311 (78.7) 

 
PCG current smoking status 
Yes 
No 
Missing 

126 (9.1) 
1260 (90.9) 

1 

 
85 (9.6) 

804 (90.4) 
1 

52 (13.2) 
342 (86.8) 

1 
Current smoker in home or PCG smoker 
Yes 
No 
Missing 

325 (23.5) 
1059 (76.5) 

3 

 
207 (23.3) 
680 (76.7) 

3 

97 (24.6) 
297 (75.4) 

1 
Either parent has asthma 
Yes 
No 
Missing 

 
144 (10.7) 

1204 (89.3) 
39 

 
98 (11.3) 

770 (88.7) 
22 

 
49 (12.7) 

336 (87.3) 
10 

Mother has asthma 
Yes 
No 
Missing 

96 (7.0) 
1277 (93.0) 

14 

 
62 (7.0) 

823 (93.0) 
5 

34 (8.7) 
357 (91.3) 

4 
Gas appliance in home (stove, range or oven) 
Yes 
No 

1287 (92.8) 
100 (7.2) 

 
821 (92.2) 
69 (7.8) 

370 (93.7) 
25 (6.3) 

Gas appliance with pilot light (stove, range or oven) 
Yes 
No 
Missing 

579 (42.5) 
782 (57.5) 

26 

 
384 (43.7) 
494 (56.3) 

12 

172 (44.3) 
216 (55.7) 

7 
Pests in home in past 12 months 
Yes 
No 

1047 (75.5) 
340 (24.5) 

 
677 (76.1) 
213 (23.9) 

301 (76.2) 
94 (23.8) 

Cockroaches in home in past 12 months 
Yes 
No 

404 (29.1) 
983 (70.9) 

 
253 (28.4) 
637 (71.6) 

100 (25.3) 
295 (74.7)  

Mold in home in past 12 months 
Yes 
No 
Missing 

 
296 (21.4) 

1087 (78.6) 
4 

 
185 (20.9) 
702 (79.1) 

3 

 
79 (20.1) 

314 (79.9) 
2 
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Parameter 

All Subjects with 
Questionnaire Data 

(n=1,387) 
 

Subjects with One or 
More Acceptable 

Spirometry Curve 
(n=890) 

Subjects with 
Three Acceptable 
and Reproducible 

Spirometry Curves 
(n=395) 

 
Furry pets in home 
Yes 
No 
Missing 

467 (34.7) 
879 (65.3) 

41 

 
311 (36.0) 
554 (64.0) 

25 

144 (37.4) 
241 (62.6) 

10 
Neighborhood satisfaction 
Very satisfied 
Satisfied or Neutral (if volunteered) 
Dissatisfied or Very dissatisfied 
Missing 

 
283 (24.3) 
705 (60.5) 
178 (15.3) 

221 

 
179 (23.5) 
475 (62.2) 
109 (14.3) 

127 

 
90 (26.6) 

201 (59.5) 
47 (13.9) 

57 
How safe to walk alone after dark in this neighborhood 
Completely safe 
Fairly safe or Somewhat dangerous 
Extremely dangerous 
Missing 

181 (15.6) 
921 (79.5) 
57 (4.9) 

228 

 
121 (15.9) 
600 (79.1) 
38 (5.0) 

131 

54 (16.0) 
267 (79.0) 
17 (5.0) 

57 
No. adults you recognize in neighborhood 
Many adults or most or all adults 
A few adults or no adults 
Missing 

 
595 (51.0) 
571 (49.0) 

221 

 
396 (51.9) 
367 (48.1) 

127 

 
179 (53.0) 
159 (47.0) 

57 
Neighborhood cohesion score2 
<2.52 (median) (higher) 
≥2.52 
Missing 

631 (54.7) 
523 (45.3) 

233 

 
421 (55.6) 
336 (44.4) 

133 

196 (58.2) 
141 (41.8) 

58 
No. relatives living in neighborhood 
Any 
None 
Missing 

468 (40.3) 
694 (59.7) 

233  

 
295 (38.8) 
465 (61.1) 

130 

125 (37.1) 
212 (62.9) 

58 
No. friends living in neighborhood 
Any 
None 
Missing 

804 (67.0) 
362 (31.1) 

221 

 
532 (69.7) 
231 (30.3) 

127 

232 (68.6) 
106 (31.4) 

57 
No. of neighbors talked to for 10 min in past 30 days 
Any 
None 
Missing 

 
1021 (87.6) 
144 (12.4) 

222 

 
671 (88.1) 
91 (11.9) 

128 

 
294 (87.2) 
43 (12.8) 

58 
No. groups participated in past 12 months 
Any 
None 
Missing 

 
420 (36.1) 
745 (63.9) 

222 

 
279 (36.6) 
483 (63.4) 

128 

 
123 (36.4) 
215 (63.6) 

57 
Neighborhood support score3 
1-<2 (higher) 
2-<4 
≥4 
Missing 

326 (28.3) 
737 (63.9) 
90 (7.8) 

234 

 
222 (29.4) 
475 (63.0) 
57 (7.6) 

136 

 
109 (32.6) 
197 (59.0) 
28 (8.4) 

61 
Neighborhood Level 
Census tract level rating of neighborhood cohesion4 
<2.53 (median) (higher) 
≥2.53 
Missing 

675 (51.1) 
646 (48.9) 

66 

 
446 (51.8) 
415 (48.2) 

29 

202 (52.7) 
181 (47.3) 

12 
Census tract level rating of neighborhood safety5 
<2.13 (median) (higher) 
≥2.13 
Missing 

 
658 (49.8) 
663 (50.2) 

66 

 
433 (50.2) 
429 (49.8) 

28 

 
194 (50.7) 
189 (49.4) 

12 
Tract-level disadvantage6 
<0.13 (median) (lower) 
≥0.13 
Missing 

685 (49.7) 
694 (50.3) 

8 

 
433 (48.8) 
454 (51.2) 

3 

213 (54.1) 
181 (45.9) 

1 
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Parameter 

All Subjects with 
Questionnaire Data 

(n=1,387) 
 

Subjects with One or 
More Acceptable 

Spirometry Curve 
(n=890) 

Subjects with 
Three Acceptable 
and Reproducible 

Spirometry Curves 
(n=395) 

 
Percent of tract in same home 5 years ago7 
<0.52 (median) 
≥0.52 
Missing 

 
684 (49.6) 
695 (50.4) 

8 

 
451 (50.8) 
436 (49.2) 

3 

 
189 (48.0) 
205 (52.0) 

1 
Census tract predominately Latino or White7 
Yes 
No 
Missing 

1072 (77.7) 
307 (22.3) 

8 

 
688 (77.6) 
199 (22.4) 

3 

 
294 (74.6) 
100 (25.4) 

1 
(1) Overweight is based on 2000 U.S. Centers for Disease Control BMI-for-age charts; separate charts are used for boys and 
girls. Children with BMI for age values at 85-<95th percentile are considered at risk for overweight; children with BMI for age 
values ≥95th percentile are considered overweight. Here the at risk of overweight and overweight groups were combined. Only 
children age 2 years and older that could stand on their own were measured for height and weight in the L.A. FANS-2 study. 
(2) Average of responses for the following questions (with reverse coding where necessary): (a) This is a close-knit 
neighborhood; (b) There are adults kids can look up to; (c) People are willing to help their neighbors; (d) Neighbors generally 
don’t get along; (e) Adults watch out that kids are safe; (f) People in neighborhood don’t share same values; (g) People in 
neighborhood can be trusted; (h) Parents in neighborhood know kids friends; (i) Adults in neighborhood know local kids’ (j) 
Parents in neighborhood know each other; (k) Neighbors do something if kid hangs out; (l) Would do something if kid does 
graffiti; (m) Would scold kid if showing disrespect. Responses for a-j were: 1=strongly agree, 2=agree, 3=unsure, 4=disagree, 
5=strongly disagree; Responses for k-m were: 1=very likely, 2=likely, 3=unsure, 4=unlikely, 5=very unlikely. 
(3) Average of responses (1=often, 2=sometimes, 3=rarely, 4=never) for the following questions: (a) How often do neighbors do 
favors for each other; (b) How often do neighbors watch each others property; (c) How often do neighbors ask advice.  
(4) This is the average of the neighborhood cohesion score for adult respondents in a given census tract. 
(5) This is the average of the neighborhood safety responses for adult respondents in a given census tract using the following 
numeric responses for each response: 1=completely safe, 2=fairly safe, 3=somewhat dangerous, 4=extremely dangerous. 
(6) This is the average of the following four variables for each census tract (based on U.S. Census 2000 data): percent poor 
families, percent households on public assistance, percent female headed families with children under the age of 18 years, 
percent male unemployment. 
(7) Based on U.S. Census 2000 data. 
 
 
Table 13. Distribution (Number, Percent) of Wheeze and Medication Use Outcomes Among L.A. 
FANS-2 Child Participants With and Without a Doctor-Diagnosis of Asthma (n=1,387) 

 Doctor-diagnosed Asthma 
(n=191) 

No Doctor-diagnosed 
Asthma (n=1196) 

Wheeze in past 12 mos, medication use 89 (46.6%) 23 (1.9%) 
Wheeze in past 12 mos, no medication use 7 (3.7%) 26 (2.2%) 
No wheeze in past 12 mos, medication use 24 (12.6%) 26 (2.2%) 
No wheeze in past 12 mos, no medication use 71 (37.1%) 1121 (93.7%) 
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Table 14. Number and (Percent) of Subjects in Each Outcome Group by Individual-, Family-, and 
Neighborhood-Level Demographic Characteristics and Crude Odds Ratios (95% Confidence 
Intervals) for Doctor-Diagnosed Asthma (Ever)  

 
Parameter 

Doctor-Diagnosed 
Asthma (Ever) 

(n=191) 

No Doctor-Diagnosed 
Asthma 

(n=1196) 
 

Crude OR (95% CI) 
Individual Level 
Gender 
Female 
Male 

 
75 (39.3) 
116 (60.7) 

 
596 (49.8) 
600 (50.2) 

 
1.00 

1.54 (1.13, 2.10) 
Age (years)  
≤5 
6-<10 
10-<15 
≥15  

7 (3.7) 
47 (24.6) 
84 (44.0) 
53 (27.8) 

93 (7.8) 
332 (27.8) 
467 (39.1) 
304 (25.4) 

 
0.53 (0.23, 1.22) 

1.00 
1.27 (0.87, 1.87) 
1.23 (0.81, 1.88) 

Race/ethnicity  
Non-Hispanic White 
Hispanic 
African American 
Asian/Other 

40 (20.9) 
107 (56.0) 
26 (13.6) 
18 (9.4)  

222 (18.6) 
814 (68.1) 
79 (6.6) 
81 (6.8)  

 
1.00 

0.86 (0.58, 1.26) 
2.10 (1.24, 3.56) 
1.37 (0.76, 2.48) 

Health insurance during past month  
Yes  
No 
Missing 

177 (92.7) 
14 (7.3) 

 

1010 (84.7) 
182 (15.7) 

4 

 
1.00 

0.44 (0.25, 0.77) 
 

Usual source of sick care 
Yes 
No 
Missing 

187 (97.9) 
4 (2.1) 

 

1111 (93.0) 
84 (7.0) 

1 

 
1.00 

0.28 (0.10, 0.78) 
 

Overweight1 
Yes 
No  
Missing 

 
83 (51.6) 
78 (48.4) 

30 

 
449 (43.6) 
580 (56.4) 

167 

 
1.38 (0.99, 1.92) 

1.00 
 

Family Level 
Family Income (dollars)  
<20,000 
20,000-<35,000 
35,000-<65,000 
≥65,000 
Missing 

39 (22.4) 
43 (24.7) 
40 (23.0) 
52 (29.9) 

17 

 
271 (24.9) 
278 (25.5) 
278 (25.5) 
263 (24.1) 

106 

 
0.73 (0.47, 1.14) 
0.78 (0.51, 1.21) 
0.73 (0.47, 1.14) 

1.00 

Homeowner 
Yes 
No 
Missing 

78 (43.8) 
100 (56.2) 

13 

470 (41.3) 
668 (58.7) 

58 

 
1.00 

0.90 (0.66, 1.24) 
 

PCG’s education (years) 
<12  
12  
>12 
Missing 

63 (33.2) 
29 (15.3) 
98 (51.6) 

1 

500 (42.0) 
213 (17.9) 
478 (40.1) 

5 

 
0.62 (0.44, 0.86) 
0.66 (0.43, 1.04) 

1.00 

Foreign born status of PCG 
US born 
Foreign born 

 
104 (54.5) 
87 (45.6) 

 
425 (35.5) 
771 (64.5) 

 
1.00 

0.46 (0.34, 0.63) 
PCG current marital status 
Married or living with partner 
Unmarried/not living with partner 

132 (69.1) 
59 (30.9) 

939 (78.5) 
257 (21.5) 

 
1.00 

1.63 (1.17, 2.29) 
Current household smokers 
Yes 
No 
Missing 

49 (25.7) 
142 (74.3) 

 

248 (20.8) 
946 (79.2) 

2 

 
1.32 (0.92, 1.88) 

1.00 
 

PCG current smoking status 
Yes 
No 
Missing 

 
26 (13.6) 
165 (86.4) 

 

 
100 (8.4) 

1095 (91.6) 
1 

 
1.73 (1.09, 2.74) 

1.00 
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Parameter 

Doctor-Diagnosed 
Asthma (Ever) 

(n=191) 

No Doctor-Diagnosed 
Asthma 

(n=1196) 
 

Crude OR (95% CI) 
Current smoker in home or PCG smoker 
Yes 
No 
Missing 

56 (29.3) 
135 (70.7) 

 

269 (22.6) 
924 (77.4) 

3 

 
1.43 (1.02, 2.00) 

1.00 

Either parent has asthma 
Yes 
No 
Missing 

55 (29.7) 
130 (70.3) 

6 

89 (7.7) 
1074 (92.3) 

33 

 
5.11 (3.48, 7.48) 

1.00 

Mother has asthma 
Yes 
No 
Missing 

39 (20.7) 
149 (79.3) 

3 

57 (4.8) 
1128 (95.2) 

11 

 
5.18 (3.33, 8.06) 

1.00 

Gas appliance in home (stove, range or oven) 
Yes 
No 

171 (89.5) 
20 (10.5) 

1116 (93.3) 
80 (6.7) 

 
0.61 (0.37, 1.03) 

1.00 
Gas appliance with pilot light (stove, range or oven) 
Yes 
No 
Missing 

67 (36.4) 
117 (63.6) 

7 

512 (43.5) 
665 (56.5) 

19 

 
0.74 (0.54, 1.03) 

1.00 

Pests in home in past 12 months 
Yes 
No 

156 (81.7) 
35 (18.3) 

891 (74.5) 
305 (25.5)  

 
1.53 (1.03, 2.25) 

1.00 
Cockroaches in home in past 12 months 
Yes 
No 

55 (28.8) 
136 (71.2) 

349 (29.2) 
847 (70.8) 

 
0.98 (0.70, 1.38) 

1.00 
Mold in home in past 12 months 
Yes 
No 

 
41 (21.6) 
149 (78.4) 

1 

255 (21.4) 
938 (78.6) 

3 

 
1.01 (0.70, 1.47) 

1.00 

Furry pets in home 
Yes 
No 
Missing 

71 (38.2) 
115 (61.8) 

5 

396 (34.1) 
764 (65.9) 

36 

 
1.19 (0.87, 1.64) 

1.00 

Neighborhood satisfaction 
Very satisfied 
Satisfied or Neutral (if volunteered) 
Dissatisfied or Very dissatisfied 
Missing 

37 (23.3) 
96 (60.4) 
26 (16.4) 

32 

246 (24.4) 
609 (60.5) 
152 (15.1) 

189 

 
1.00 

1.05 (0.70, 1.58) 
1.14 (0.66, 1.95) 

 
How safe to walk alone after dark in this neighborhood 
Completely safe 
Fairly safe or Somewhat dangerous 
Extremely dangerous 
Missing 

14 (8.9) 
135 (85.4) 

9 (5.7) 
33 

167 (16.7) 
786 (78.5) 
48 (4.8) 

195 

 
1.00 

2.05 (1.15, 3.64) 
2.24 (0.91, 5.48) 

 
No. adults you recognize in neighborhood 
Many adults or most or all adults 
A few adults or no adults 
Missing 

83 (52.2) 
76 (47.8) 

32 

512 (50.8) 
495 (49.2) 

189 

 
1.00 

0.95 (0.68, 1.32) 
 

Neighborhood cohesion score2 
<2.52 (median) (higher) 
≥2.52 
Missing 

82 (51.6) 
77 (48.4) 

32 

549 (55.2) 
446 (44.8) 

201 

 
1.00 

1.16 (0.83, 1.62) 
 

No. relatives living in neighborhood 
Any 
None 
Missing 

54 (34.0) 
105 (66.0) 

32 

414 (41.3) 
589 (58.7) 

193 

 
1.00 

1.37 (0.96, 1.94) 
 

No. friends living in neighborhood 
Any 
None 
Missing 

105 (66.0) 
54 (34.0) 

32 

699 (69.4) 
308 (30.6) 

189 

 
1.00 

1.17 (0.82, 1.66) 
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Parameter 

Doctor-Diagnosed 
Asthma (Ever) 

(n=191) 

No Doctor-Diagnosed 
Asthma 

(n=1196) 
 

Crude OR (95% CI) 
No. of neighbors talked to for 10 min in past 30 days 
Any 
None 
Missing 

140 (88.1) 
19 (11.9) 

32 

881 (87.6) 
125 (12.4) 

190 

 
1.00 

0.96 (0.57, 1.60) 
 

No. groups participated in past 12 months 
Any 
None 
Missing 

60 (37.7) 
99 (62.3) 

32 

360 (35.8) 
646 (64.2) 

190 

 
1.00 

0.92 (0.65, 1.30) 
 

Neighborhood support score3 
1-<2 (higher) 
2-<4 
≥4 
Missing 

42 (27.4) 
102 (66.7) 

9 (5.9) 
38 

284 (28.4) 
635 (63.5) 
81 (8.1) 

196 

 
1.00 

1.09 (0.74, 1.60) 
0.75 (0.35, 1.61) 

 
Neighborhood Level 
Census tract level rating of neighborhood cohesion4 
<2.53 (median) (higher) 
≥2.53 
Missing 

98 (53.9) 
84 (46.1) 

9 

577 (50.7) 
562 (49.3) 

57 

 
1.00 

0.88 (0.64, 1.20) 

Census tract level rating of neighborhood safety5 
<2.13 (median) (higher) 
≥2.13 
Missing 

 
97 (53.6) 
84 (46.4) 

10 

 
561 (49.2) 
579 (50.8) 

56 

 
1.00 

0.84 (0.61, 1.15) 

Tract-level disadvantage6 
<0.13 (median) (lower) 
≥0.13 
Missing 

 
95 (50.0) 
95 (50.0) 

1 

 
590 (49.6) 
599 (50.4) 

7 

 
1.00 

0.99 (0.73, 1.34) 

Percent of tract in same home 5 years ago7 
<0.52 (median) 
≥0.52 
Missing 

97 (51.0) 
93 (49.0) 

1 

598 (50.3) 
591 (49.7) 

7 

 
0.97 (0.71, 1.32) 

1.00 

Census tract predominately Latino or White7 
Yes 
No 
Missing 

 
141 (74.2) 
49 (25.8) 

1 

931 (78.3) 
228 (21.7) 

7 

 
0.80 (0.56, 1.14) 

1.00 
 

(1) Based on 2000 U.S. Centers for Disease Control BMI-for-age charts; separate charts are used for boys and girls. Children 
with BMI for age values at 85-<95th percentile are considered at risk for overweight; children with BMI for age values ≥95th 
percentile are considered overweight. Only children age 2 years and older that could stand on their own were measured for 
height and weight in the L.A. FANS-2 study. 
(2) Average of responses for the following questions (with reverse coding where necessary): (a) This is a close-knit 
neighborhood; (b) There are adults kids can look up to; (c) People are willing to help their neighbors; (d) Neighbors generally 
don’t get along; (e) Adults watch out that kids are safe; (f) People in neighborhood don’t share same values; (g) People in 
neighborhood can be trusted; (h) Parents in neighborhood know kids friends; (i) Adults in neighborhood know local kids’ (j) 
Parents in neighborhood know each other; (k) Neighbors do something if kid hangs out; (l) Would do something if kid does 
graffiti; (m) Would scold kid if showing disrespect. Responses for a-j were: 1=strongly agree, 2=agree, 3=unsure, 4=disagree, 
5=strongly disagree; Responses for k-m were: 1=very likely, 2=likely, 3=unsure, 4=unlikely, 5=very unlikely. 
(3) Average of responses (1=often, 2=sometimes, 3=rarely, 4=never) for the following questions: (a) How often do neighbors do 
favors for each other; (b) How often do neighbors watch each others property; (c) How often do neighbors ask advice.  
(4) This is the average of the neighborhood cohesion score for adult respondents in a given census tract. 
(5) This is the average of the neighborhood safety responses for adult respondents in a given census tract using the following 
numeric responses for each response: 1=completely safe, 2=fairly safe, 3=somewhat dangerous, 4=extremely dangerous. 
(6) This is the average of the following four variables for each census tract (based on U.S. Census 2000 data): percent poor 
families, percent households on public assistance, percent female headed families with children under the age of 18 years, 
percent male unemployment. 
(7) Based on U.S. Census 2000 data. 
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Table 15. Number and (Percent) of Subjects in Each Outcome Group by Individual-, Family-, and 
Neighborhood-Level Demographic Characteristics and Crude Odds Ratios (95% Confidence 
Intervals) for Wheeze in Past 12 Months 

 
Parameter 

Wheeze in past 12 
months 
(n=145) 

No Wheeze in past 12 
months 

(n=1242) 
 

Crude OR (95% CI) 
Individual Level 

Gender 
Female 
Male 

51 (35.2) 
94 (64.8) 

620 (49.9) 
622 (50.1) 

 
1.00 

1.84 (1.28, 2.63) 
Age (years)  
≤5 
6-<10 
10-<15 
≥15  

9 (6.2) 
40 (27.6) 
60 (41.4) 
36 (24.8) 

91 (7.3) 
339 (27.3) 
491 (39.5) 
321 (25.9) 

0.84 (0.39, 1.79) 
1.00 

1.04 (0.68, 1.58) 
0.95 (0.59, 1.53) 

Race/ethnicity  
Non-Hispanic White 
Hispanic 
African American 
Asian/Other 

32 (22.0) 
80 (55.2) 
20 (13.8) 
13 (9.0) 

230 (18.5) 
841 (67.7) 
85 (6.8) 
86 (6.9) 

 
1.00 

0.80 (0.52, 1.24) 
1.86 (1.03, 3.35) 
1.21 (0.62, 2.38) 

Health insurance during past month  
Yes  
No 
Missing 

128 (88.3) 
17 (11.7) 

 

1059 (85.5) 
179 (14.5) 

4 

1.00 
0.79 (0.46, 1.34) 

 
Usual source of sick care 
Yes 
No 
Missing 

 
137 (94.5) 

8 (5.5) 
 

1161 (93.6) 
80 (6.4) 

1 

1.00 
0.85 (0.40, 1.79) 

 
Overweight1 
Yes 
No  
Missing 

 
67 (55.8) 
53 (44.2) 

25 

 
465 (43.5) 
605 (56.5) 

172 

 
1.65 (1.13, 2.41) 

1.00 

Family Level 
Family Income (dollars)  
<20,000 
20,000-<35,000 
35,000-<65,000 
≥65,000 
Missing 

28 (21.5) 
30 (23.1) 
31 (23.9) 
41 (31.5) 

15 

282 (24.9) 
291 (25.7) 
287 (25.3) 
274 (24.1) 

108 

 
0.66 (0.40, 1.10) 
0.69 (0.42, 1.13) 
0.72 (0.44, 1.18) 

1.00 
 

Homeowner 
Yes 
No 
Missing 

64 (46.0) 
75 (54.0) 

6 

484 (41.1) 
693 (58.9) 

65 

 
1.00 

0.82 (0.58, 1.17) 
 

PCG’s education (years) 
<12  
12  
>12 
Missing 

 
42 (29.2) 
25 (17.3) 
77 (53.5) 

1 

 
521 (42.1) 
217 (17.6) 
499 (40.3) 

5 

 
0.52 (0.35, 0.78) 
0.75 (0.46, 1.21) 

1.00 
 

Foreign born status of PCG 
US born 
Foreign born 

 
80 (55.2) 
65 (44.8) 

 
449 (36.2) 
793 (63.8) 

 
1.00 

0.46 (0.33, 0.65) 
PCG current marital status 
Married or living with partner 
Unmarried/not living with partner 

97 (66.9) 
48 (33.1) 

974 (78.4) 
268 (21.6) 

 
1.00 

1.80 (1.24, 2.61) 
Current household smokers 
Yes 
No 
Missing 

33 (22.8) 
112 (77.2) 

 

264 (21.3) 
976 (78.7) 

2 

1.09 (0.72, 1.64) 
1.00 

 
PCG current smoking status 
Yes 
No 
Missing 

20 (13.8) 
125 (86.2) 

 

106 (8.5) 
1135 (91.5) 

1 

 
1.71 (1.03, 2.86) 

1.00 
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Parameter 

Wheeze in past 12 
months 
(n=145) 

No Wheeze in past 12 
months 

(n=1242) 
 

Crude OR (95% CI) 
Current smoker in home or PCG smoker 
Yes 
No 
Missing 

39 (26.9) 
106 (73.1) 

 

286 (23.1) 
953 (76.9) 

3 

 
1.23 (0.83, 1.81) 

1.00 

Either parent has asthma 
Yes 
No 
Missing 

34 (24.5) 
105 (75.5) 

6 

110 (9.1) 
1099 (90.9) 

33 

 
3.24 (2.10, 4.99) 

1.00 

Mother has asthma 
Yes 
No 
Missing 

28 (19.4) 
116 (80.6) 

1 

68 (5.5) 
1161 (94.5) 

13 

 
4.12 (2.55, 6.66) 

1.00 

Gas appliance in home (stove, range or oven) 
Yes 
No 

 
132 (91.0) 
13 (9.0) 

1155 (93.0) 
87 (7.0) 

0.77 (0.42, 1.41) 
1.00 

Gas appliance with pilot light (stove, range or oven) 
Yes 
No 
Missing 

57 (41.0) 
82 (59.0) 

6 

522 (42.7) 
700 (57.3) 

20 

0.93 (0.65, 1.33) 
1.00 

 
Pests in home in past 12 months 
Yes 
No 

117 (80.7) 
28 (19.3) 

930 (74.9) 
312 (25.1) 

1.40 (0.91, 2.16) 
1.00 

Cockroaches in home in past 12 months 
Yes 
No 

45 (31.0) 
100 (69.0) 

359 (28.9) 
883 (71.1) 

1.11 (0.76, 1.61) 
1.00 

Mold in home in past 12 months 
Yes 
No 
Missing 

36 (25.0) 
108 (75.0) 

1 

260 (21.0) 
979 (79.0) 

3 

 
1.26 (0.84, 1.88) 

1.00 
 

Furry pets in home 
Yes 
No 
Missing 

63 (44.7) 
78 (55.3) 

4 

404 (33.5) 
801 (66.5) 

37 

1.60 (1.13, 2.28) 
1.00 

 
Neighborhood satisfaction 
Very satisfied 
Satisfied or Neutral (if volunteered) 
Dissatisfied or Very dissatisfied 
Missing 

 
35 (28.2) 
68 (54.8) 
21 (17.0) 

56 

 
248 (23.8) 
637 (61.1) 
157 (15.1) 

165 

 
1.00 

0.76 (0.49, 1.17) 
0.95 (0.53, 1.69) 

 
How safe to walk alone after dark in this neighborhood 
Completely safe 
Fairly safe or Somewhat dangerous 
Extremely dangerous 
Missing 

12 (9.8) 
105 (85.4) 

6 (4.8) 
22 

169 (16.3) 
816 (78.8) 
51 (4.9) 

206 

1.00 
1.81 (0.98, 3.37) 
1.66 (0.59, 4.64) 

 
No. adults you recognize in neighborhood 
Many adults or most or all adults 
A few adults or no adults 
Missing 

73 (58.9) 
51 (41.1) 

21 

522 (50.1) 
520 (49.9) 

200 

1.00 
0.70 (0.48, 1.02) 

 
Neighborhood cohesion score 
<2.52 (median) (higher) 
≥2.52 
Missing=233 

75 (60.5) 
49 (39.5) 

21 

556 (54.0) 
474 (46.0) 

212 

1.00 
0.77 (0.52, 1.12) 

 
No. relatives living in neighborhood 
Any 
None 
Missing 

45 (36.3) 
79 (63.7) 

21 

423 (40.8) 
615 (59.2) 

204 

1.00 
1.21 (0.82, 1.78) 

 
No. friends living in neighborhood 
Any 
None 
Missing 

88 (71.0) 
36 (29.0) 

21 

716 (68.7) 
326 (31.3) 

200 

1.00 
0.90 (0.60, 1.35) 

 



112 

 
Parameter 

Wheeze in past 12 
months 
(n=145) 

No Wheeze in past 12 
months 

(n=1242) 
 

Crude OR (95% CI) 
No. of neighbors talked to for 10 min in past 30 days 
Any 
None 
Missing 

106 (85.5) 
18 (14.5) 

21 

915 (87.9) 
126 (12.1) 

201 

 
1.00 

1.23 (0.72, 2.10) 

No. groups participated in past 12 months 
Any 
None 
Missing 

56 (45.2) 
68 (54.8) 

21 

364 (35.0) 
677 (65.0) 

201 

 
1.00 

0.65 (0.45, 0.95) 
 

Neighborhood support score 
1-<2 (higher) 
2-<4 
≥4 
Missing 

43 (36.1) 
70 (58.8) 
6 (5.1) 

26 

283 (27.4) 
667 (64.5) 
84 (8.1) 

208 

1.00 
0.69 (0.46, 1.04) 
0.47 (0.19, 1.14) 

 
Neighborhood Level 
Census tract level rating of neighborhood cohesion 
<2.53 (median) (higher) 
≥2.53 
Missing 

79 (56.8) 
60 (43.2) 

6 

596 (50.4) 
586 (49.6) 

60 

 
1.00 

0.77 (0.54, 1.10) 

Census tract level rating of neighborhood safety 
<2.13 (median) (higher) 
≥2.13 
Missing 

 
70 (50.7) 
68 (49.3) 

7 

588 (49.7) 
595 (50.3) 

59 

 
1.00 

0.96 (0.68, 1.37) 

Tract-level disadvantage 
<0.13 (median) (lower) 
≥0.13 
Missing 

80 (55.6) 
64 (44.4) 

1 

605 (49.0) 
630 (51.0) 

7 

 
1.00 

0.77 (0.54, 1.09) 
 

Percent of tract in same home 5 years ago 
<0.52 (median) 
≥0.52 
Missing 

78 (54.2) 
66 (45.8) 

1 

617 (50.0) 
618 (50.0) 

7 

 
0.85 (0.60, 1.19) 

1.00 

Census tract predominately Latino or White 
Yes 
No 
Missing 

 
111 (77.1) 
33 (22.9) 

1 

961 (77.8) 
274 (22.2) 

7 

 
0.96 (0.64, 1.45) 

1.00 
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Table 16. Number and (Percent) of Subjects in Each Outcome Group by Individual-, Family-, and 
Neighborhood-Level Demographic Characteristics and Crude Odds Ratios (95% Confidence 
Intervals) for Wheeze in Past 12 Months with Any Night Waking 

 
Parameter 

Wheeze in past 12 
months with any 

night waking 
(n=73) 

No Wheeze in past 12 
months or wheeze 

without night waking 

(n=1314) 
 

Crude OR (95% CI) 
Family Level 

Gender 
Female 
Male 

24 (32.9) 
49 (67.1) 

647 (49.2) 
667 (50.8) 

 
1.00 

1.98 (1.20, 3.27) 
Age (years) 
≤5 
6-<10 
10-<15 
≥15 

5 (6.8) 
20 (27.4) 
31 (42.5) 
17 (23.3) 

117 (8.9) 
331 (25.2) 
519 (39.5) 
347 (26.4) 

0.71 (0.26, 1.93) 
1.00 

0.99 (0.55, 1.76) 
0.81 (0.42, 1.58) 

Race/ethnicity 
Non-Hispanic White 
Hispanic 
African American 
Asian/Other 

14 (19.2) 
42 (57.5) 
12 (16.4) 
5 (6.9) 

248 (18.9) 
879 (66.9) 
93 (7.1) 
94 (7.1) 

 
1.00 

0.98 (0.53, 1.81) 
2.46 (1.15, 5.29) 
1.01 (0.37, 2.77) 

Health insurance during past month 
Yes 
No 
Missing 

65 (89.0) 
8 (11.0) 

 

1122 (85.7) 
188 (14.3) 

4 

 
1.00 

0.74 (0.35, 1.56) 
 

Usual source of sick care 
Yes 
No 
Missing 

69 (94.5) 
4 (5.5) 

 

1229 (93.6) 
84 (6.4) 

1 

 
1.00 

0.85 (0.30, 2.38) 
 

Overweight1 
Yes 
No  
Missing 

 
37 (59.7) 
25 (40.3) 

11 

 
495 (43.4) 
633 (56.1) 

186 

 
1.89 (1.12, 3.19) 

1.00 

Family Level 
Family Income (dollars) 
<20,000 
20,000-<35,000 
35,000-<65,000 
≥65,000 
Missing 

14 (21.9) 
17 (26.6) 
16 (25.0) 
17 (26.5) 

64 

296 (24.7) 
304 (25.3) 
302 (25.2) 
298 (24.8) 

59 

 
0.83 (0.40, 1.71) 
0.98 (0.49, 1.96) 
0.93 (0.46, 1.87) 

1.00 
 

Homeowner 
Yes 
No 
Missing 

30 (43.5) 
39 (56.5) 

4 

518 (41.5) 
729 (58.5) 

67 

 
1.00 

0.92 (0.57, 1.51) 
 

PCG’s education (years) 
<12 
12 
>12 
Missing 

21 (29.2) 
15 (20.8) 
36 (50.0) 

1 

542 (41.4) 
227 (17.3) 
540 (41.3) 

5 

 
0.58 (0.34, 1.01) 
0.99 (0.53, 1.85) 

1.00 
 

Foreign born status of PCG 
US born 
Foreign born 

39 (53.4) 
34 (46.6) 

490 (37.3) 
824 (62.7) 

 
1.00 

0.52 (0.32, 0.83) 
PCG current marital status 
Married or living with partner 
Unmarried/not living with partner 

 
46 (63.0) 
27 (37.0) 

 
1025 (78.0) 
289 (22.0) 

 
1.00 

2.08 (1.27, 3.41) 
Current household smokers 
Yes 
No 
Missing 

19 (26.0) 
54 (74.0) 

 

278 (21.2) 
1034 (78.8) 

2 

 
1.31 (0.76, 2.24) 

1.00 
 

PCG current smoking status 
Yes 
No 
Missing 

13 (17.8) 
60 (82.2) 

 

113 (8.6) 
1200 (91.4) 

1 

2.30 (1.23, 4.32) 
1.00 
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Parameter 

Wheeze in past 12 
months with any 

night waking 
(n=73) 

No Wheeze in past 12 
months or wheeze 

without night waking 

(n=1314) 
 

Crude OR (95% CI) 
Current smoker in home or PCG smoker 
Yes 
No 
Missing 

22 (30.1) 
51 (69.9) 

 

303 (23.1) 
1008 (76.9) 

3 

 
1.44 (0.86, 2.41) 

1.00 

Either parent has asthma 
Yes 
No 
Missing 

19 (27.5) 
50 (72.5) 

4 

125 (9.8) 
1154 (90.2) 

35 

 
3.51 (2.01, 6.14) 

1.00 

Mother has asthma 
Yes 
No 
Missing 

14 (19.4) 
58 (80.6) 

1 

82 (6.3) 
1219 (93.7) 

13 

 
3.59 (1.92, 6.70) 

1.00 

Gas appliance in home (stove, range or oven) 
Yes 
No 

68 (93.2) 
5 (6.8) 

1219 (92.8) 
95 (7.2) 

1.06 (0.42, 2.69) 
1.00 

Gas appliance with pilot light (stove, range or oven) 
Yes 
No 
Missing 

30 (42.3) 
41 (57.7) 

2 

549 (42.6) 
741 (57.4) 

24 

0.99 (0.61, 1.60) 
1.00 

 
Pests in home in past 12 months 
Yes 
No 

60 (82.2) 
13 (17.8) 

987 (75.1) 
327 (24.9) 

1.53 (0.83, 2.82) 
1.00 

Cockroaches in home in past 12 months 
Yes 
No 

19 (26.0) 
54 (74.0) 

385 (29.3) 
929 (70.7) 

0.85 (0.50, 1.45) 
1.00 

Mold in home in past 12 months 
Yes 
No 
Missing 

18 (24.7) 
55 (75.3) 

 

278 (21.2) 
1032 (78.8) 

4 

1.22 (0.70, 2.10) 
1.00 

 
Furry pets in home 
Yes 
No 
Missing 

30 (42.3) 
41 (57.7) 

2 

437 (34.3) 
838 (65.7) 

39 

1.40 (0.86, 2.28) 
1.00 

 
Neighborhood satisfaction 
Very satisfied 
Satisfied or Neutral (if volunteered) 
Dissatisfied or Very dissatisfied 
Missing 

 
13 (20.0) 
41 (63.1) 
11 (16.9) 

8 

 
270 (24.5) 
664 (60.3) 
167 (15.2) 

213 

 
1.00 

1.28 (0.68, 2.43) 
1.37 (0.60, 3.12) 

 
How safe to walk alone after dark in this neighborhood 
Completely safe 
Fairly safe or Somewhat dangerous 
Extremely dangerous 
Missing 

4 (6.3) 
58 (90.6) 
2 (3.1) 

9 

177 (16.2) 
863 (78.8) 
55 (5.0) 

219 

1.00 
2.97 (1.07, 8.30) 
1.61 (0.29, 9.02) 

 
No. adults you recognize in neighborhood 
Many adults or most or all adults 
A few adults or no adults 
Missing 

38 (58.5) 
27 (41.5) 

8 

557 (50.6) 
544 (49.4) 

213 

1.00 
0.73 (0.44, 1.21) 

 
Neighborhood cohesion score 
<2.52 (median) (higher) 
≥2.52 
Missing 

38 (58.5) 
27 (41.5) 

8 

593 (54.5) 
496 (45.5) 

225 

1.00 
0.85 (0.51, 1.41) 

 
No. relatives living in neighborhood 
Any 
None 
Missing 

25 (38.5) 
40 (61.5) 

8 

443 (40.4) 
654 (59.6) 

217 

1.00 
1.08 (0.65, 1.81) 

 
No. friends living in neighborhood 
Any 
None 
Missing 

51 (78.5) 
14 (21.5) 

8 

753 (68.4) 
348 (31.6) 

213 

1.00 
0.59 (0.32, 1.09) 
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Parameter 

Wheeze in past 12 
months with any 

night waking 
(n=73) 

No Wheeze in past 12 
months or wheeze 

without night waking 

(n=1314) 
 

Crude OR (95% CI) 
No. of neighbors talked to for 10 min in past 30 days 
Any 
None 
Missing 

58 (89.2) 
7 (10.8) 

8 

963 (87.5) 
137 (12.5) 

214 

1.00 
0.85 (0.38, 1.90) 

 
No. groups participated in past 12 months 
Any 
None 
Missing 

27 (41.5) 
38 (58.5) 

8 

393 (35.7) 
707 (64.3) 

214 

1.00 
0.78 (0.47, 1.30) 

 
Neighborhood support score 
1-<2 (higher) 
2-<4 
≥4 
Missing 

21 (33.3) 
40 (63.5) 
2 (3.2) 

10 

305 (28.0) 
697 (63.9) 
88 (8.1) 

224 

1.00 
0.83 (0.48, 1.44) 
0.33 (0.08, 1.44) 

 
Neighborhood Level 
Census tract level rating of neighborhood cohesion 
<2.53 (median) (higher) 
≥2.53 
Missing 

35 (48.6) 
37 (51.4) 

1 

640 (51.2) 
609 (48.8) 

65 

 
1.00 

1.11 (0.69, 1.79) 

Census tract level rating of neighborhood safety 
<2.13 (median) (higher) 
≥2.13 
Missing 

33 (46.5) 
38 (53.5) 

1 

625 (50.0) 
625 (50.0) 

7 

 
1.00 

1.15 (0.71, 1.86) 
 

Tract-level disadvantage 
<0.13 (median) (lower) 
≥0.13 
Missing 

 
38 (52.8) 
35 (47.2) 

1 

 
647 (49.5) 
660 (50.5) 

7 

 
1.00 

0.88 (0.55, 1.41) 

Percent of tract in same home 5 years ago 
<0.52 (median) 
≥0.52 
Missing 

33 (45.8) 
39 (54.2) 

1 

662 (50.7) 
645 (49.4) 

7 

 
1.21 (0.75, 1.95) 

1.00 

Census tract predominately Latino or White 
Yes 
No 
Missing 

56 (77.8) 
16 (22.2) 

1 

1016 (77.7) 
291 (22.3) 

7 

 
1.00 (0.57, 1.77) 

1.00 
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Table 17. Number and (Percent) of Subjects in Each Outcome Group by Individual-, Family-, and 
Neighborhood-Level Demographic Characteristics and Crude Odds Ratios (95% Confidence 
Intervals) for Medication Use for Asthma or Wheeze in Past 12 Months  

 
Parameter 

Medication use for 
asthma or wheeze in 

past 12 months 
(n=162) 

No Medication use for 
asthma or wheeze in past 

12 months 

(n=1225) 

 
Crude OR (95% CI) 

Individual Level 

Gender 
Female 
Male 

57 (35.2) 
105 (64.8) 

614 (50.1) 
611 (49.9) 

1.00 
1.85 (1.32, 2.60) 

Age (years) 
≤5 
6-<10 
10-<15 
≥15 

10 (6.2) 
48 (29.6) 
65 (40.1) 
39 (24.1) 

90 (7.4) 
331 (27.0) 
486 (39.7) 
318 (26.0) 

 
0.77 (0.37, 1.57) 

1.00 
0.92 (0.62, 1.37) 
0.85 (0.54, 1.33) 

Race/ethnicity 
Non-Hispanic White 
Hispanic 
African American 
Asian/Other 

36 (22.2) 
86 (53.1) 
26 (16.1) 
14 (8.6) 

226 (18.5) 
835 (68.2) 
79 (6.4) 
85 (6.9) 

 
1.00 

0.65 (0.43, 0.97) 
2.07 (1.21, 3.54) 
1.04 (0.55, 1.98) 

Health insurance during past month 
Yes 
No 
Missing 

148 (91.4) 
14 (8.6) 

 

1039 (85.1) 
182 (14.9) 

4 

 
1.00 

0.54 (0.31, 0.96) 
 

Usual source of sick care 
Yes 
No 
Missing 

154 (95.1) 
8 (4.9) 

 

1144 (93.5) 
80 (6.5) 

1 

 
1.00 

0.74 (0.35, 1.57) 
 

Overweight1 
Yes 
No  
Missing 

 
70 (54.3) 
59 (45.7) 

33 

 
462 (43.5) 
599 (56.5) 

164 

 
1.54 (1.07, 2.22) 

1.00 
 

Family Level 
Family Income (dollars) 
<20,000 
20,000-<35,000 
35,000-<65,000 
≥65,000 
Missing 

36 (24.7) 
35 (24.0) 
34 (23.3) 
41 (28.1) 

16 

274 (24.5) 
286 (25.6) 
284 (25.4) 
274 (24.5) 

107 

 
0.88 (0.54, 1.42) 
0.82 (0.51, 1.32) 
0.80 (0.49, 1.30) 

1.00 
 

Homeowner 
Yes 
No 
Missing 

65 (43.0) 
86 (57.0) 

11 

483 (41.5) 
682 (58.5) 

60 

 
1.00 

0.94 (0.67, 1.32) 
 

PCG’s education (years) 
<12 
12 
>12 
Missing 

50 (31.1) 
26 (16.1) 
85 (52.8) 

1 

513 (42.1) 
216 (17.7) 
491 (40.3) 

5 

 
0.56 (0.39, 0.82) 
0.70 (0.44, 1.11) 

1.00 
 

Foreign born status of PCG 
US born 
Foreign born 

 
83 (51.2) 
79 (48.8) 

 
446 (36.4) 
779 (63.6) 

 
1.00 

0.55 (0.39, 0.76) 
PCG current marital status 
Married or living with partner 
Unmarried/not living with partner 

 
109 (67.3) 
53 (32.7) 

 
962 (78.5) 
263 (21.5) 

 
1.00 

1.78 (1.25, 2.54) 
Current household smokers 
Yes 
No 
Missing 

34 (21.0) 
128 (79.0) 

 

263 (21.5) 
960 (78.5) 

2 

 
0.97 (0.65, 1.45) 

1.00 
 

PCG current smoking status 
Yes 
No 
Missing 

20 (12.4) 
142 (87.6) 

 

106 (8.7) 
1118 (91.3) 

1 

 
1.49 (0.89, 2.47) 

1.00 
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Parameter 

Medication use for 
asthma or wheeze in 

past 12 months 
(n=162) 

No Medication use for 
asthma or wheeze in past 

12 months 

(n=1225) 

 
Crude OR (95% CI) 

Current smoker in home or PCG smoker 
Yes 
No 
Missing 

40 (24.7) 
122 (75.3) 

 

285 (23.3) 
937 (76.7) 

3 

 
1.08 (0.74, 1.58) 

1.00 

Either parent has asthma 
Yes 
No 
Missing 

43 (27.6) 
113 (72.4) 

6 

101 (8.5) 
1091 (91.5) 

33 

 
4.11 (2.74, 6.17) 

1.00 

Mother has asthma 
Yes 
No 
Missing 

32 (20.0) 
128 (80.0) 

2 

64 (5.3) 
1149 (94.7) 

12 

 
4.49 (2.83, 7.13) 

1.00 

Gas appliance in home (stove, range or oven) 
Yes 
No 

 
148 (91.4) 
14 (8.6) 

1139 (93.0) 
86 (7.0) 

0.80 (0.44, 1.44) 
1.00 

Gas appliance with pilot light (stove, range or oven) 
Yes 
No 
Missing 

63 (40.4) 
93 (59.6) 

6 

516 (42.8) 
689 (57.2) 

20 

0.91 (0.64, 1.27) 
1.00 

 
Pests in home in past 12 months 
Yes 
No 

 
128 (79.0) 
34 (21.0) 

919 (75.0) 
306 (25.0) 

1.25 (0.84, 1.87) 
1.00 

Cockroaches in home in past 12 months 
Yes 
No 

44 (27.2) 
118 (72.8) 

360 (29.4) 
865 (70.6) 

0.90 (0.62, 1.29) 
1.00 

Mold in home in past 12 months 
Yes 
No 
Missing 

35 (21.7) 
126 (78.3) 

1 

261 (21.4) 
961 (78.6) 

3 

1.02 (0.69, 1.52) 
1.00 

 
Furry pets in home 
Yes 
No 
Missing 

60 (37.7) 
99 (62.3) 

29 

407 (34.3) 
780 (65.7) 

12 

1.16 (0.83, 1.64) 
1.00 

 
Neighborhood satisfaction 
Very satisfied 
Satisfied or Neutral (if volunteered) 
Dissatisfied or Very dissatisfied 
Missing 

 
35 (26.3) 
77 (57.9) 
21 (15.8) 

29 

 
248 (24.0) 
628 (60.8) 
157 (15.2) 

192 

 
1.00 

0.87 (0.57, 1.33) 
0.95 (0.53, 1.69) 

 
How safe to walk alone after dark in this neighborhood 
Completely safe 
Fairly safe or Somewhat dangerous 
Extremely dangerous 
Missing 

15 (11.5) 
108 (82.4) 

8 (6.1) 
31 

166 (16.1) 
813 (79.1) 
49 (4.8) 

197 

1.00 
1.47 (0.84, 2.59) 
1.81 (0.72, 4.51) 

 
No. adults you recognize in neighborhood 
Many adults or most or all adults 
A few adults or no adults 
Missing 

68 (51.1) 
65 (48.9) 

29 

527 (51.0) 
506 (49.0) 

192 

1.00 
1.00 (0.69, 1.43) 

 
Neighborhood cohesion score 
<2.52 (median) (higher) 
≥2.52 
Missing 

76 (57.1) 
57 (42.9) 

29 

555 (54.4) 
466 (45.6) 

204 

1.00 
0.89 (0.62, 1.29) 

 
No. relatives living in neighborhood 
Any 
None 
Missing 

55 (41.4) 
78 (58.6) 

29 

413 (40.1) 
616 (59.9) 

196 

1.00 
0.95 (0.66, 1.37) 

 
No. friends living in neighborhood 
Any 
None 
Missing=221 

91 (68.4) 
42 (31.6) 

29 

713 (69.0) 
320 (31.0) 

192 

1.00 
1.03 (0.70, 1.52) 
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Parameter 

Medication use for 
asthma or wheeze in 

past 12 months 
(n=162) 

No Medication use for 
asthma or wheeze in past 

12 months 

(n=1225) 

 
Crude OR (95% CI) 

No. of neighbors talked to for 10 min in past 30 days 
Any 
None 
Missing 

117 (88.0) 
16 (12.0) 

29 

904 (87.6) 
128 (12.4) 

193 

1.00 
0.97 (0.56, 1.68) 

 
No. groups participated in past 12 months 
Any 
None 
Missing 

58 (43.6) 
75 (56.4) 

29 

362 (35.1) 
670 (64.9) 

193 

1.00 
0.70 (0.49, 1.01) 

 
Neighborhood support score 
1-<2 (higher) 
2-<4 
≥4 
Missing 

44 (34.1) 
78 (60.5) 
7 (5.4) 

33 

282 (27.5) 
659 (64.4) 
83 (8.1) 

201 

1.00 
0.76 (0.51, 1.13) 
0.54 (0.24, 1.25) 

 
Neighborhood Level 
Census tract level rating of neighborhood cohesion 
<2.53 (median) (higher) 
≥2.53 
Missing 

85 (56.3) 
66 (43.7) 

11 

590 (50.4) 
580 (49.6) 

55 

 
1.00 

0.79 (0.56, 1.11) 

Census tract level rating of neighborhood safety 
<2.13 (median) (higher) 
≥2.13 
Missing 

75 (50.3) 
74 (49.7) 

13 

583 (49.7) 
589 (50.3) 

53 

 
1.00 

0.98 (0.69, 1.37) 

Tract-level disadvantage 
<0.13 (median) (lower) 
≥0.13 
Missing 

 
81 (50.3) 
80 (49.7) 

1 

 
604 (49.6) 
614 (50.4) 

7 

 
1.00 

0.97 (0.70, 1.35) 
 

Percent of tract in same home 5 years ago 
<0.52 (median) 
≥0.52 
Missing 

83 (51.6) 
78 (48.5) 

1 

612 (50.3) 
606 (49.8) 

7 

 
0.95 (0.68, 1.32) 

1.00 

Census tract predominately Latino or White 
Yes 
No 
Missing 

122 (75.8) 
39 (24.2) 

1 

 
950 (78.0) 
268 (22.0) 

7 

 
0.88 (0.60, 1.30) 

1.00 
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Table 18. Number and (Percent) of Subjects in Each Outcome Group by Individual-, Family-, and 
Neighborhood-Level Demographic Characteristics and Crude Odds Ratios (95% Confidence 
Intervals) for Sneezing, Runny or Blocked Nose Without Cold in Past 12 Months  

 
Parameter 

Sneezing, runny or 
blocked nose 

without cold in past 
12 months 

(n=270) 

Sneezing, runny or 
blocked nose without 

cold in past 12 months 
 (n=1116) 

 
Crude OR (95% CI) 

Individual Level 

Gender 
Female 
Male 

121 (44.8) 
149 (55.2) 

549 (49.2) 
567 (50.8) 

 
1.00 

1.19 (0.91, 1.56) 
Age (years) 
≤5 
6-<10 
10-<15 
≥15 

20 (7.4) 
75 (27.8) 
110 (40.7) 
65 (24.1) 

102 (9.1) 
275 (24.7) 
440 (39.4) 
299 (26.8) 

0.72 (0.42, 1.24) 
1.00 

0.92 (0.66, 1.28) 
0.80 (0.55, 1.15) 

Race/ethnicity 
Non-Hispanic White 
Hispanic 
African American 
Asian/Other 

71 (26.3) 
135 (50.0) 
28 (10.4) 
36 (13.3) 

191 (17.1) 
785 (70.3) 
77 (6.9) 
63 (5.7) 

 
1.00 

0.48 (0.35, 0.66) 
1.12 (0.69, 1.83) 
1.68 (1.04, 2.72) 

Health insurance during past month 
Yes 
No 
Missing 

238 (88.5) 
31 (11.5) 

1 

948 (85.2) 
165 (14.8) 

3 

 
1.00 

0.75 (0.50, 1.13) 
 

Usual source of sick care 
Yes 
No 
Missing 

251 (93.0) 
19 (7.0) 

 

1046 (93.8) 
69 (6.2) 

1 

 
1.00 

1.15 (0.68, 1.94) 
 

Overweight1 
Yes 
No  
Missing 

 
99 (42.5) 
134 (57.5) 

37 

 
432 (45.2) 
524 (54.8) 

160 

 
0.90 (0.67, 1.20) 

1.00 
  

Family Level 
Family Income (dollars) 
<20,000 
20,000-<35,000 
35,000-<65,000 
≥65,000 
Missing 

37 (15.48) 
48 (20.08) 
66 (27.62) 
88 (36.82) 

31 

272 (26.56) 
273 (26.66) 
252 (24.61) 
227 (22.17) 

92 

 
0.35 (0.23, 0.54) 
0.45 (0.31, 0.67) 
0.68 (0.47, 0.97) 

1.00 
 

Homeowner 
Yes 
No 
Missing 

133 (51.55) 
125 (48.45) 

12 

415 (39.26) 
642 (60.74) 

59 

 
1.00 

0.61 (0.46, 0.80) 
 

PCG’s education (years) 
<12 
12 
>12 
Missing 

70 (26.02) 
41 (15.24) 

158 (58.74) 
1 

492 (44.28) 
201 (18.09) 
418 (37.62) 

5 

0.38 (0.28, 0.51) 
0.54 (0.37, 0.79) 

1.00 
 

Foreign born status of PCG 
US born 
Foreign born 

 
139 (51.48) 
131 (48.52) 

 
390 (34.95) 
726 (65.05) 

 
1.00 

0.51 (0.39, 0.66) 
PCG current marital status 
Married or living with partner 
Unmarried/not living with partner 

 
204 (75.56) 
66 (24.44) 

 
866 (77.60) 
250 (22.40) 

 
1.00 

1.12 (0.82, 1.53) 
Current household smokers 
Yes 
No 
Missing 

62 (22.96) 
208 (77.04) 

 

235 (21.10) 
879 (78.90) 

2 

 
1.12 (0.81, 1.53) 

1.00 
 

PCG current smoking status 
Yes 
No 
Missing 

26 (9.63) 
244 (90.37) 

 

100 (8.97) 
1015 (91.03) 

1 

 
1.08 (0.69, 1.70) 

1.00 
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Parameter 

Sneezing, runny or 
blocked nose 

without cold in past 
12 months 

(n=270) 

Sneezing, runny or 
blocked nose without 

cold in past 12 months 
 (n=1116) 

 
Crude OR (95% CI) 

Current smoker in home or PCG smoker 
Yes 
No 
Missing 

67 (24.81) 
203 (75.19) 

 

258 (23.18) 
855 (76.82) 

3 

 
1.09 (0.80, 1.49) 

1.00 
 

Either parent has asthma 
Yes 
No 
Missing 

50 (18.94) 
214 (81.06) 

6 

94 (8.68) 
989 (91.32) 

33 

 
2.46 (1.69, 3.57) 

1.00 
 

Mother has asthma 
Yes 
No 
Missing 

36 (13.43) 
232 (86.57) 

2 

60 (5.43) 
1044 (94.57) 

12 

 
2.70 (1.74, 4.18) 

1.00 
 

Gas appliance in home (stove, range or oven) 
Yes 
No 

253 (93.70) 
17 (6.30) 

1033 (92.56) 
83 (7.44) 

1.20 (0.70, 2.05) 
1.00 

Gas appliance with pilot light (stove, range or oven) 
Yes 
No 
Missing 

106 (39.85) 
160 (60.15) 

 

472 (43.14) 
622 (56.86) 

 

0.87 (0.66, 1.15) 
1.00 

 
Pests in home in past 12 months 
Yes 
No 

220 (81.48) 
50 (18.52) 

827 (74.10) 
289 (25.90) 

1.54 (1.10, 2.15) 
1.00 

Cockroaches in home in past 12 months 
Yes 
No 

75 (27.78) 
195 (72.22) 

329 (29.48) 
787 (70.52) 

0.92 (0.68, 1.24) 
1.00 

Mold in home in past 12 months 
Yes 
No 
Missing 

72 (26.77) 
197 (73.23) 

1 

224 (20.13) 
889 (79.87) 

3 

1.45 (1.07, 1.97) 
1.00 

 
Furry pets in home 
Yes 
No 
Missing 

105 (40.38) 
155 (59.62) 

10 

362 (33.36) 
723 (66.64) 

31 

1.35 (1.03, 1.79) 
1.00 

 
Neighborhood satisfaction 
Very satisfied 
Satisfied or Neutral (if volunteered) 
Dissatisfied or Very dissatisfied 
Missing 

 
74 (31.09) 

132 (55.46) 
32 (13.45) 

32 

 
209 (22.55) 
572 (61.70) 
146 (15.75) 

189 

 
1.00 

0.65 (0.47, 0.90) 
0.62 (0.39, 0.99) 

 
How safe to walk alone after dark in this neighborhood 
Completely safe 
Fairly safe or Somewhat dangerous 
Extremely dangerous 
Missing 

47 (19.83) 
184 (77.64) 

6 (2.53) 
 

134 (14.55) 
736 (79.91) 
51 (5.54) 

 

1.00 
0.71 (0.49, 1.03) 
0.34 (0.14, 0.83) 

 
No. adults you recognize in neighborhood 
Many adults or most or all adults 
A few adults or no adults 
Missing 

129 (54.20) 
109 (45.80) 

32 

466 (50.27) 
461 (49.73) 

189 

1.00 
0.85 (0.64, 1.14) 

 
Neighborhood cohesion score 
<2.52 (median) (higher) 
≥2.52 
Missing 

137 (57.81) 
100 (42.19) 

33 

493 (53.82) 
423 (46.18) 

200 

1.00 
0.85 (0.64, 1.14) 

 
No. relatives living in neighborhood 
Any 
None 
Missing 

92 (38.82) 
145 (61.18) 

33 

376 (40.69) 
548 (59.31) 

192 

1.00 
1.08 (0.81, 1.45) 

 
No. friends living in neighborhood 
Any 
None 
Missing 

167 (70.17) 
71 (29.83) 

32 

636 (68.61) 
291 (31.39) 

189 

1.00 
0.93 (0.68, 1.27) 
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Parameter 

Sneezing, runny or 
blocked nose 

without cold in past 
12 months 

(n=270) 

Sneezing, runny or 
blocked nose without 

cold in past 12 months 
 (n=1116) 

 
Crude OR (95% CI) 

No. of neighbors talked to for 10 min in past 30 days 
Any 
None 
Missing 

209 (87.82) 
29 (12.18) 

32 

811 (87.58) 
115 (12.42) 

190 

1.00 
0.98 (0.63, 1.51) 

 
No. groups participated in past 12 months 
Any 
None 
Missing 

99 (41.60) 
139 (58.40) 

32 

321 (34.67) 
605 (65.33) 

190 

1.00 
0.75 (0.56, 1.00) 

 
Neighborhood support score 
1-<2 (higher) 
2-<4 
≥4 
Missing 

68 (29.06) 
150 (64.10) 
16 (6.84) 

36 

258 (28.10) 
586 (63.83) 
74 (8.06) 

198 

1.0 
0.97 (0.70, 1.34) 
0.82 (0.45, 1.50) 

 
Neighborhood Level 
Census tract level rating of neighborhood cohesion 
<2.53 (median) (higher) 
≥2.53 
Missing 

164 (62.4) 
99 (37.6) 

7 

510 (48.3) 
547 (51.8) 

59 

 
1.00 

0.56 (0.43, 0.74) 

Census tract level rating of neighborhood safety 
<2.13 (median) (higher) 
≥2.13 
Missing 

 
152 (58.0) 
110 (42.0) 

8 

 
506 (47.8) 
552 (52.2) 

58 

 
1.00 

0.66 (0.51, 0.87) 

Tract-level disadvantage 
<0.13 (median) (lower) 
≥0.13 
Missing 

164 (61.4) 
103 (38.6) 

3 

521 (46.9) 
590 (53.1) 

5 

 
1.00 

0.56 (0.42, 0.73) 

Percent of tract in same home 5 years ago 
<0.52 (median) 
≥0.52 
Missing 

135 (50.6) 
132 (49.4) 

3 

560 (50.4) 
551 (49.6) 

5 

 
0.99 (0.76, 1.30) 

1.00 

Census tract predominately Latino or White 
Yes 
No 
Missing 

 
201 (75.3) 
66 (24.7) 

3 

 
870 (78.3) 
241 (21.7) 

5 

 
0.84 (0.62, 1.15) 

1.00 
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Table 19. Number and (Percent) of Subjects in Each Outcome Group by Individual-, Family-, and 
Neighborhood-Level Demographic Characteristics and Crude Odds Ratios (95% Confidence 
Intervals) for More than Three Doctor-Diagnosed Ear Infections in One Year  

 
Parameter 

More than 3 doctor-
diagnosed ear 

infections in 1 yr 
(n=140) 

More than 3 doctor-
diagnosed ear infections 

in 1 yr 
 (n=1246) 

 
Crude OR (95% CI) 

Individual Level 

Gender 
Female 
Male 

66 (47.14) 
74 (52.86) 

604 (48.48) 
642 (51.52) 

 
1.00 

1.06 (0.74, 1.50) 
Age (years) 
≤5 
6-<10 
10-<15 
≥15 

11 (7.86) 
41 (29.29) 
57 (40.71) 
31 (22.14) 

111 (8.91) 
310 (24.88) 
492 (39.49) 
333 (26.73) 

0.75 (0.37, 1.51) 
1.00 

0.88 (0.57, 1.34) 
0.70 (0.43, 1.15) 

Race/ethnicity 
Non-Hispanic White 
Hispanic 
African American 
Asian/Other 

48 (34.29) 
69 (49.29) 
7 (5.00) 

16 (11.43) 

214 (17.17) 
852 (68.38) 
97 (7.78) 
83 (6.66) 

 
1.00 

0.40 (0.27, 0.60) 
0.35 (0.16, 0.81) 
1.00 (0.54, 1.85) 

Health insurance during past month 
Yes 
No 
Missing 

128 (91.43) 
12 (8.57) 

 

1058 (85.19) 
184 (14.81) 

4 

 
1.00 

0.54 (0.29, 0.99) 
 

Usual source of sick care 
Yes 
No 
Missing 

130 (92.86) 
10 (7.14) 

 

1167 (93.73) 
78 (6.27) 

1 

 
1.00 

1.15 (0.58, 2.28) 
 

Overweight1 
Yes 
No  
Missing 

 
60 (50.4) 
59 (49.6) 

21 

 
472 (44.1) 
598 (55.9) 

176 

 
1.29 (0.88, 1.88) 

1.00 

Family Level 
Family Income (dollars) 
<20,000 
20,000-<35,000 
35,000-<65,000 
≥65,000 
Missing 

20 (15.87) 
28 (22.22) 
33 (26.19) 
45 (35.71) 

14 

290 (25.48) 
293 (25.75) 
285 (25.04) 
270 (23.73) 

108 

 
0.41 (0.24, 0.72) 
0.57 (0.35, 0.95) 
0.70 (0.43, 1.12) 

1.00 
 

Homeowner 
Yes 
No 
Missing 

67 (50.00) 
67 (50.00) 

6 

481 (40.73) 
700 (59.27) 

65 

 
1.00 

0.69 (0.48, 0.98) 
 

PCG’s education (years) 
<12 
12 
>12 
Missing 

42 (30.22) 
15 (10.79) 
82 (58.99) 

1 

521 (41.98) 
227 (18.29) 
493 (39.73) 

5 

0.49 (0.33, 0.72) 
0.40 (0.22, 0.70) 

1.00 
 

Foreign born status of PCG 
US born 
Foreign born 

84 (60.00) 
56 (40.00) 

444 (35.63) 
802 (64.37) 

 
1.00 

0.37 (0.26, 0.53) 
PCG current marital status 
Married or living with partner 
Unmarried/not living with partner 

103 (73.57) 
37 (26.43) 

967 (77.61) 
279 (22.39) 

 
1.00 

1.25 (0.84, 1.86) 
Current household smokers 
Yes 
No 
Missing 

28 (20.00) 
112 (80.00) 

 

268 (21.54) 
976 (78.46) 

2 

0.91 (0.59, 1.41) 
1.00 

 
PCG current smoking status 
Yes 
No 
Missing 

 
13 (9.29) 

127 (90.71) 
 

 
113 (9.08) 

1132 (90.92) 
1 

 
1.03 (0.56, 1.87) 

1.00 
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Parameter 

More than 3 doctor-
diagnosed ear 

infections in 1 yr 
(n=140) 

More than 3 doctor-
diagnosed ear infections 

in 1 yr 
 (n=1246) 

 
Crude OR (95% CI) 

Current smoker in home or PCG smoker 
Yes 
No 
Missing 

32 (22.86) 
108 (77.14) 

 

292 (23.49) 
951 (76.51) 

3 

 
0.97 (0.64, 1.46) 

1.00 
 

Either parent has asthma 
Yes 
No 
Missing 

25 (18.38) 
111 (81.62) 

4 

118 (9.74) 
1093 (90.26) 

35 

 
2.09 (1.30, 3.35) 

1.00 
 

Mother has asthma 
Yes 
No 
Missing 

17 (12.41) 
120 (87.59) 

3 

78 (6.32) 
1157 (93.68) 

11 

 
2.10 (1.20, 3.67) 

1.00 
 

Gas appliance in home (stove, range or oven) 
Yes 
No 

120 (85.71) 
20 (14.29) 

1166 (93.58) 
80 (6.42) 

0.41 (0.24, 0.70) 
1.00 

Gas appliance with pilot light (stove, range or oven) 
Yes 
No 
Missing 

49 (36.03) 
87 (63.97) 

4 

530 (43.30) 
694 (56.70) 

22 

0.74 (0.51, 1.07) 
1.00 

 
Pests in home in past 12 months 
Yes 
No 

109 (77.86) 
31 (22.14) 

938 (75.28) 
308 (24.72) 

1.16 (0.76, 1.76) 
1.00 

Cockroaches in home in past 12 months 
Yes 
No 

27 (19.29) 
113 (80.71) 

377 (30.26) 
869 (69.74) 

0.55 (0.36, 0.85) 
1.00 

Mold in home in past 12 months 
Yes 
No 
Missing 

39 (27.86) 
101 (72.14) 

 

257 (20.69) 
985 (79.31) 

4 

1.48 (1.00, 2.20) 
1.00 

 
Furry pets in home 
Yes 
No 
Missing 

 
65 (47.79) 
71 (52.21) 

4 

 
402 (33.25) 
807 (66.75) 

37 

 
1.84 (1.29, 2.63) 

1.00 
 

Neighborhood satisfaction 
Very satisfied 
Satisfied or Neutral (if volunteered) 
Dissatisfied or Very dissatisfied 
Missing 

29 (24.58) 
73 (61.86) 
16 (13.56) 

22 

253 (24.16) 
632 (60.36) 
162 (15.47) 

199 

1.00 
1.01 (0.64, 1.59) 
0.86 (0.45, 1.64) 

 
How safe to walk alone after dark in this neighborhood 
Completely safe 
Fairly safe or Somewhat dangerous 
Extremely dangerous 
Missing 

19 (16.10) 
95 (80.51) 
4 (3.39) 

22 

162 (15.58) 
825 (79.33) 
53 (5.10) 

206 

1.00 
0.98 (0.58, 1.65) 
0.64 (0.21, 1.98) 

 
No. adults you recognize in neighborhood 
Many adults or most or all adults 
A few adults or no adults 
Missing 

61 (51.7) 
57 (48.3) 

22 

513 (49.0) 
534 (51.0) 

199 

1.00 
0.97 (0.67, 1.42) 

 
Neighborhood cohesion score1 
<2.52 (median) (higher) 
≥2.52 
Missing 

65 (55.56) 
52 (44.44) 

23 

565 (54.54) 
471 (45.46) 

210 

1.00 
0.96 (0.65, 1.41) 

 
No. relatives living in neighborhood 
Any 
None 
Missing 

40 (33.90) 
78 (66.10) 

22 

428 (41.04) 
615 (58.96) 

203 

1.00 
1.36 (0.91, 2.03) 

 
No. friends living in neighborhood 
Any 
None 
Missing 

89 (75.42) 
29 (24.58) 

22 

715 (68.29) 
332 (31.71) 

199 

1.00 
0.70 (0.45, 1.09) 
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Parameter 

More than 3 doctor-
diagnosed ear 

infections in 1 yr 
(n=140) 

More than 3 doctor-
diagnosed ear infections 

in 1 yr 
 (n=1246) 

 
Crude OR (95% CI) 

No. of neighbors talked to for 10 min in past 30 days 
Any 
None 
Missing 

100 (84.75) 
18 (15.25) 

22 

920 (87.95) 
126 (12.05) 

200 

1.00 
1.32 (0.77, 2.25) 

 
No. groups participated in past 12 months 
Any 
None 
Missing 

50 (42.37) 
68 (57.63) 

22 

369 (35.28) 
677 (64.72) 

200 

1.00 
0.74 (0.50, 1.09) 

 
Neighborhood support score 
1-<2 (higher) 
2-<4 
≥4 
Missing 

36 (31.30) 
70 (60.87) 
9 (7.83) 

25 

290 (27.97) 
666 (64.22) 
81 (7.81) 

209 

1.00 
0.85 (0.55, 1.30) 
0.90 (0.41, 1.94) 

 
Neighborhood Level 
Census tract level rating of neighborhood cohesion 
<2.53 (median) (higher) 
≥2.53 
Missing 

78 (57.8) 
57 (42.2) 

5 

596 (50.3) 
589 (49.7) 

62 

 
1.00 

0.74 (0.52, 1.06) 

Census tract level rating of neighborhood safety 
<2.13 (median) (higher) 
≥2.13 
Missing 

82 (60.3) 
54 (39.7) 

4 

575 (48.6) 
609 (51.4) 

63 

 
1.00 

0.62 (0.43, 0.89) 

Tract-level disadvantage 
<0.13 (median) (lower) 
≥0.13 
Missing 

 
83 (59.3) 
57 (40.7) 

 

 
601 (48.6) 
637 (51.5) 

8 

 
1.00 

0.65 (0.45, 0.92) 

Percent of tract in same home 5 years ago 
<0.52 (median) 
≥0.52 
Missing 

74 (52.9) 
66 (47.1) 

 

620 (50.1) 
618 (50.0) 

8 

 
0.90 (0.63, 1.27) 

1.00 

Census tract predominately Latino or White 
Yes 
No 
Missing 

105 (75.0) 
35 (25.0) 

 

967 (78.1) 
271 (21.9) 

8 

 
0.84 (0.56, 1.26) 

1.00 
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Table 20. Associations (Odds ratios, 95% CIs) between Annual Average Air Pollution Exposure Metrics (12 Mos prior to Interview) 
and Wheeze in the Past 12 Months Among L.A. FANS-2 Participants Ages 0–17 Years 
Pollutant Crude (per IQR 

increase)1 
Model 1: 

Adjusting for 
age, 

race/ethnicity, 
sex, income 

Model 
1+Maternal 

Asthma 

Model 1+ No. of 
Groups 

Participated in 
past 12 mos 

 

Model 1+ Tract-
level 

disadvantage 

Model 
1+Overweight 

Model 1+ 
Maternal 

Asthma, No. of 
Groups 

Participated in 
past 12 mos, 
Overweight 

 

Model 1 + 
Maternal 

Asthma, No. of 
Groups 

Participated in 
past 12 mos, 
Tract-level 

disadvantage, 
Overweight 

NO 0.92 (0.74, 1.15) 1.19 (0.93, 1.52) 1.14 (0.88, 1.46) 1.26 (0.96, 1.65) 1.21 (0.94, 1.56) 1.23 (0.94, 1.62) 1.13 (0.84, 1.51) 1.15 (0.85, 1.55) 
NO2 0.91 (0.74, 1.13) 1.14 (0.89, 1.47) 1.09 (0.84, 1.40) 1.13 (0.86, 1.48) 1.15 (0.89, 1.49) 1.17 (0.88, 1.55) 1.02 (0.76, 1.37) 1.02 (0.76, 1.37) 
NOx 0.92 (0.74, 1.14) 1.18 (0.92, 1.51) 1.12 (0.87, 1.44) 1.24 (0.94, 1.64) 1.20 (0.93, 1.55) 1.23 (0.93, 1.63) 1.10 (0.82, 1.48) 1.11 (0.82, 1.51) 
NO-LT2 1.08 (0.89, 1.31) 1.29 (1.05, 1.59) 1.24 (1.00, 1.53) 1.39 (1.11, 1.74) 1.30 (1.06, 1.60) 1.37 (1.09, 1.72) 1.30 (1.02, 1.66) 1.31 (1.02, 1.67) 
NO2-LT 0.98 (0.80, 1.20) 1.19 (0.95, 1.50) 1.14 (0.90, 1.43) 1.17 (0.92, 1.50) 1.19 (0.95, 1.50) 1.22 (0.94, 1.57) 1.08 (0.83, 1.40) 1.08 (0.83, 1.40) 
NOx-LT 1.06 (0.88, 1.28) 1.26 (1.03, 1.54) 1.20 (0.98, 1.47) 1.34 (1.07, 1.67) 1.27 (1.04, 1.55) 1.33 (1.06, 1.67) 1.23 (0.97, 1.57) 1.24 (0.97, 1.57) 
O3 1.03 (0.79, 1.33) 0.90 (0.68, 1.20) 0.94 (0.70, 1.25) 0.81 (0.59, 1.11) 0.89 (0.67, 1.19) 0.94 (0.68, 1.29) 0.95 (0.67, 1.36) 0.95 (0.66, 1.36) 
PM2.5 0.95 (0.82, 1.10) 1.04 (0.88, 1.23) 1.02 (0.86, 1.21) 0.99 (0.83, 1.18) 1.04 (0.88, 1.23) 1.01 (0.84, 1.22) 0.91 (0.75, 1.10) 0.91 (0.75, 1.10) 
(1) Interquartile ranges (IQRs) for each pollutant were: NO=10.7 ppb; NO2=6.1 ppb; NOx=16.9 ppb; NO-LT=11.8 ppb; NO2-LT=6.1; NOx-LT=16.9 ppb; O3=29.1 ppb; 
PM2.5=2.4 µg/m3. 
(2) “LT” stands for “more local traffic impact” LUR model estimates. 
 
Table 21. Associations (Odds ratios1, 95% CIs) between Annual Average Air Pollution Exposure Metrics (12 Mo prior to Interview) 
and Wheeze in the Past 12 Months Among L.A. FANS-2 Participants Ages 0–17 Years: Incorporating School Locations and Stratifying 
on Neighborhood Disadvantage   
Pollutant Two Pollutant 

Model2 
HOME ONLY 

Two Pollutant 
Model2 

HOME+SCHOOL 

Tract-level 
disadvantage3 
<0.13 (median) 
HOME ONLY 

Higher SES 

Tract-level 
disadvantage3 

≥0.13 
HOME ONLY 

Lower SES 

Tract-level 
disadvantage3 
<0.13 (median) 

HOME+SCHOOL 
 
 

Tract-level 
disadvantage3 

≥0.13 
HOME+SCHOOL

 
 

NO-LT4 

O3 
1.31 (1.02, 1.68) 
1.02 (0.69, 1.49) 

1.42 (1.07, 1.87) 
1.03 (0.69, 1.54) 

1.41 (0.98, 2.02) 
0.70 (0.42, 1.16) 

1.40 (0.99, 1.98) 
1.80 (0.99, 3.24) 

1.63 (1.07, 2.49) 
0.74 (0.43, 1.28) 

1.46 (1.00, 2.12) 
1.60 (0.87, 2.96) 

NO2-LT 
O3 

1.08 (0.83, 1.41) 
0.95 (0.66, 1.37) 

1.14 (0.85, 1.53) 
0.94 (0.64, 1.39) 

1.35 (0.89, 2.04) 
0.62 (0.37, 1.06) 

1.09 (0.80, 1.55) 
1.51 (0.85, 2.70) 

1.60 (0.98, 2.59) 
0.62 (0.35, 1.09) 

1.09 (0.75, 1.58) 
1.33 (0.73, 2.42) 

NOx-LT 
O3 

1.24 (0.97, 1.58) 
1.00 (0.69, 1.47) 

1.34 (1.02, 1.75) 
1.02 (0.68, 1.53) 

1.39 (1.00, 1.94) 
0.69 (0.41, 1.14) 

1.30 (0.91, 1.85) 
1.76 (0.96, 3.23) 

1.60 (1.09, 2.36) 
0.72 (0.42, 1.25) 

1.33 (0.91, 1.96) 
1.60 (0.84, 2.95) 

(1) Odds ratios are per interquartile range (IQR) increase in each pollutant: NO=10.7 ppb; NO2=6.1 ppb; NOx=16.9 ppb; NO-LT=11.8 ppb; NO2-LT=6.1; NOx-LT=16.9 
ppb; O3=29.1 ppb; PM2.5=2.4 µg/m3. 
(2) Adjusting for age, race/ethnicity, sex, income, maternal asthma, overweight, no groups participated in past 12 months and tract-level disadvantage.  
(3) Stratified models are two-pollutant models, i.e., LUR variables or PM2.5 plus O3 in each model. Stratified models do not include adjustment for tract-level disadvantage.



126 

Table 22. Associations (Odds ratios, 95% CIs) between Annual Average Air Pollution Exposure Metrics (12 Mos prior to Interview) 
and Medication Use for Asthma or Wheeze in the Past 12 Months Among L.A. FANS-2 Participants Ages 0–17 Years 

Pollutant Crude (per 
IQR increase)1 

Model 1: 
Adjusting for 

age, 
race/ethnicity, 

sex, income 

Model 
1+Maternal 

Asthma 

Model 1+ No. of 
Groups 

Participated in 
past 12 mos 

 

Model 1+ 
Tract-level 
rating of 

neighborhood 
cohesion 

Model 1+ 
Maternal 

Asthma, No. of 
Groups 

Participated in 
past 12 mos 

 

Model 1+ Maternal 
Asthma, No. of 

Groups 
Participated in past 
12 mos, Tract-level 

neighborhood 
cohesion 

NO 0.89 (0.72, 1.10) 1.04 (0.81, 1.32) 1.00 (0.78, 1.28) 1.04 (0.79, 1.37) 1.11 (0.86, 1.43) 0.99 (0.75, 1.30) 1.03 (0.78, 1.37) 
NO2 0.87 (0.71, 1.06) 1.01 (0.80, 1.28) 0.96 (0.76, 1.23) 0.96 (0.74, 1.24) 1.06 (0.83, 1.36) 0.91 (0.70, 1.18) 0.96 (0.73, 1.25) 
NOx 0.89 (0.72, 1.09) 1.04 (0.82, 1.33) 1.00 (0.78, 1.28) 1.04 (0.80, 1.37) 1.11 (0.87, 1.43) 0.98 (0.75, 1.29) 1.03 (0.78, 1.35) 
NO-LT2 1.04 (0.86, 1.25) 1.15 (0.94, 1.41) 1.11 (0.90, 1.36) 1.18 (0.94, 1.48) 1.20 (0.98, 1.48) 1.12 (0.89, 1.41) 1.14 (0.91, 1.44) 
NO2-LT 0.94 (0.78, 1.14) 1.08 (0.87, 1.34) 1.03 (0.83, 1.29) 1.03 (0.82, 1.30) 1.12 (0.90, 1.40) 0.97 (0.77, 1.23) 1.02 (0.80, 1.30) 
NOx-LT 1.03 (0.86, 1.24) 1.14 (0.94, 1.39) 1.10 (0.90, 1.34) 1.17 (0.94, 1.45) 1.19 (0.98, 1.45) 1.10 (0.88, 1.37) 1.13 (0.91, 1.41) 
O3 1.09 (0.85, 1.39) 0.99 (0.76, 1.30) 1.03 (0.78, 1.36) 0.95 (0.71, 1.28) 0.98 (0.74, 1.29) 0.99 (0.73, 1.35) 0.99 (0.73, 1.34) 
PM2.5 0.90 (0.78, 1.03) 0.98 (0.84, 1.15) 0.96 (0.82, 1.13) 0.93 (0.79, 1.09) 1.00 (0.85, 1.17) 0.91 (0.77, 1.07) 0.92 (0.78, 1.10) 
(1) Interquartile ranges (IQRs) for each pollutant were: NO=10.7 ppb; NO2=6.1 ppb; NOx=16.9 ppb; NO-LT=11.8 ppb; NO2-LT=6.1; NOx-LT=16.9 ppb; O3=29.1 ppb; 
PM2.5=2.4 µg/m3. 
(2) “LT” stands for “more local traffic impact” LUR model estimates. 
 
Table 23. Associations (Odds ratios1, 95% CIs) between Annual Average Air Pollution Exposure Metrics (12 Mo prior to Interview) 
and Medication Use for Asthma or Wheeze in the Past 12 Months Among L.A. FANS-2 Participants Ages 0–17 Years: Incorporating 
School Locations and Stratifying on Neighborhood Disadvantage   
Pollutant Two Pollutant 

Model2 
HOME ONLY 

Two Pollutant 
Model2 

HOME+SCHOOL 

Tract-level 
disadvantage3 
<0.13 (median) 
HOME ONLY 

 
 

Tract-level 
disadvantage3 

≥0.13 
HOME ONLY 

 
 

Tract-level 
disadvantage3 
<0.13 (median) 

HOME+SCHOOL 
 
 

Tract-level 
disadvantage3 

≥0.13 
HOME+SCHOOL

 
 

NO-LT4 

O3 
1.15 (0.91, 1.45) 
1.03 (0.75, 1.41) 

1.20 (0.93, 1.56) 
1.01 (0.71, 1.42) 

1.34 (0.94, 1.92) 
0.59 (0.37, 0.93) 

1.15 (0.84, 1.57) 
2.25 (1.37, 3.68) 

1.44 (0.96, 2.15) 
0.54 (0.33, 0.89) 

1.19 (0.85, 1.68) 
2.30 (1.36, 3.88) 

NO2-LT 
O3 

1.02 (0.80, 1.30) 
0.99 (0.73, 1.35) 

1.03 (0.79, 1.34) 
0.95 (0.69, 1.32) 

1.35 (0.92, 1.97) 
0.53 (0.33, 0.85) 

1.02 (0.75, 1.38) 
2.07 (1.27, 3.36) 

1.45 (0.94, 2.22) 
0.47 (0.28, 0.80) 

1.02 (0.74, 1.42) 
2.06 (1.23, 3.46) 

NOx-LT 
O3 

1.13 (0.91, 1.42) 
1.03 (0.75, 1.41) 

1.17 (0.91, 1.50) 
1.00 (0.71, 1.41) 

1.39 (1.00, 1.92) 
0.58 (0.36, 0.91) 

1.12 (0.82, 1.53) 
2.24 (1.34, 3.74) 

1.48 (1.02, 2.13) 
0.53 (0.32, 0.88) 

1.16 (0.82, 1.63) 
2.30 (1.33, 3.97) 

(1) Odds ratios are per interquartile range (IQR) increase in each pollutant: NO=10.7 ppb; NO2=6.1 ppb; NOx=16.9 ppb; NO-LT=11.8 ppb; NO2-LT=6.1; NOx-LT=16.9 
ppb; O3=29.1 ppb; PM2.5=2.4 µg/m3. 
(2) Adjusting for age, race/ethnicity, sex, income, maternal asthma, no groups participated in past 12 months and census tract-level neighborhood cohesion. 
(3) Stratified models are two-pollutant models, i.e., LUR variables or PM2.5 plus O3 in each model. Stratified models do not include adjustment for census tract-level 
neighborhood cohesion. 
(4) “LT” stands for “more local traffic impact” LUR model estimates. 
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Table 24. Associations (Odds ratios, 95% CIs) between Annual Average Air Pollution Exposure Metrics (12 Mos prior to Interview) 
and Doctor-Diagnosed Asthma Among L.A. FANS-2 Participants Ages 0–17 Years 

Pollutant Crude (per 
IQR increase)1 

Model 1: 
Adjusting for 

age, 
race/ethnicity, 

sex, income 

Model 
1+Maternal 

Asthma 

Model 1+ No. of 
Relatives in 

Neighborhood 

Model 1+ 
Tract-level 

neighborhood 
safety 

Model 1+ 
Maternal 

Asthma, No. of 
Relatives in 

Neighborhood 

Model 1+ Maternal 
Asthma, No. of 

Relatives in 
Neighborhood, 

Tract-level 
neighborhood safety 

NO 0.92 (0.75, 1.12) 1.05 (0.84, 1.32) 1.01 (0.80. 1.27) 1.13 (0.88, 1.44) 1.10 (0.87, 1.38) 1.06 (0.83, 1.36) 1.07 (0.83, 1.39) 
NO2 0.95 (0.79, 1.16) 1.11 (0.88, 1.38) 1.05 (0.84, 1.33) 1.16 (0.91, 1.47) 1.13 (0.90, 1.42) 1.09 (0.85, 1.40) 1.10 (0.85, 1.41) 
NOx 0.93 (0.77, 1.13) 1.08 (0.86, 1.35) 1.03 (0.82, 1.29) 1.16 (0.91, 1.48) 1.12 (0.89, 1.41) 1.09 (0.85, 1.40) 1.10 (0.85, 1.41) 
NO-LT2 1.01 (0.85, 1.21) 1.12 (0.93, 1.36) 1.08 (0.89, 1.31) 1.19 (0.97, 1.46) 1.16 (0.96, 1.41) 1.13 (0.91, 1.39) 1.14 (0.92, 1.41) 
NO2-LT 1.02 (0.85, 1.22) 1.16 (0.95, 1.42) 1.11 (0.90, 1.37) 1.20 (0.97, 1.50) 1.18 (0.96, 1.44) 1.14 (0.91, 1.42) 1.14 (0.91, 1.43) 
NOx-LT 1.03 (0.87, 1.22) 1.14 (0.95, 1.37) 1.09 (0.90, 1.31) 1.21 (0.99, 1.47) 1.17 (0.98, 1.42) 1.14 (0.93, 1.39) 1.15 (0.95, 1.41) 
O3 0.99 (0.79, 1.25) 0.90 (0.70, 1.16) 0.94 (0.73, 1.22) 0.82 (0.62, 1.09) 0.86 (0.66, 1.12) 0.86 (0.64, 1.15) 0.86 (0.65, 1.15) 
PM2.5 0.98 (0.85, 1.12) 1.06 (0.90, 1.23) 1.04 (0.89, 1.22) 1.08 (0.91, 1.28) 1.08 (0.92, 1.27) 1.07 (0.90, 1.27) 1.05 (0.89, 1.25) 
(1) Interquartile ranges (IQRs) for each pollutant were: NO=10.7 ppb; NO2=6.1 ppb; NOx=16.9 ppb; NO-LT=11.8 ppb; NO2-LT=6.1; NOx-LT=16.9 ppb; O3=29.1 ppb; 
PM2.5=2.4 µg/m3. 
(2) “LT” stands for “more local traffic impact” LUR model estimates. 
 
Table 25. Associations (Odds ratios1, 95% CIs) between Annual Average Air Pollution Exposure Metrics (12 Mo prior to Interview) 
and Doctor-Diagnosed Asthma Among L.A. FANS-2 Participants Ages 0–17 Years: Incorporating School Locations and Stratifying on 
Neighborhood Disadvantage   
Pollutant Two Pollutant 

Model2 
HOME ONLY 

Two Pollutant 
Model2 

HOME+SCHOOL 

Tract-level 
disadvantage3 
<0.13 (median) 
HOME ONLY 

Higher SES 

Tract-level 
disadvantage3 

≥0.13 
HOME ONLY 

Lower SES 

Tract-level 
disadvantage3 
<0.13 (median) 

HOME+SCHOOL 
 
 

Tract-level 
disadvantage3 

≥0.13 
HOME+SCHOOL

 
 

NO-LT4 

O3 
1.12 (0.90, 1.40) 
0.89 (0.66, 1.19) 

1.13 (0.89, 1.45) 
0.87 (0.64, 1.20) 

1.39 (0.98, 1.96) 
0.58 (0.38, 0.88) 

1.05 (0.78, 1.41) 
1.46 (0.92, 2.31) 

1.46 (1.00, 2.15) 
0.55 (0.35, 0.86) 

1.07 (0.77, 1.49) 
1.47 (0.90, 2.41) 

NO2-LT 
O3 

1.14 (0.91, 1.44) 
0.86 (0.64, 1.16) 

1.12 (0.88, 1.44) 
0.85 (0.62, 1.16) 

1.45 (1.01, 2.10) 
0.51 (0.32, 0.80) 

1.16 (0.86, 1.55) 
1.55 (0.98, 2.45) 

1.54 (1.02, 2.30) 
0.48, (0.30, 0.77) 

1.14 (0.83, 1.56) 
1.53 (0.94, 2.50) 

NOx-LT 
O3 

1.13 (0.92, 1.40) 
0.89 (0.66, 1.20) 

1.13 (0.90, 1.43) 
0.88 (0.64, 1.20) 

1.44 (1.04, 1.97) 
0.57 (0.37, 0.87) 

1.05 (0.78, 1.42) 
1.47 (0.91, 2.38) 

1.50 (1.05, 2.14) 
0.54 (0.34, 0.85) 

1.07 (0.77, 1.49) 
1.49 (0.89, 2.49) 

(1) Odds ratios are per interquartile range (IQR) increase in each pollutant: NO=10.7 ppb; NO2=6.1 ppb; NOx=16.9 ppb; NO-LT=11.8 ppb; NO2-LT=6.1; NOx-LT=16.9 
ppb; O3=29.1 ppb; PM2.5=2.4 µg/m3. 
(2) Adjusting for age, race/ethnicity, sex, income, maternal asthma, no. relatives in neighborhood and census tract-level neighborhood safety.  
(3) Stratified models are two-pollutant models, i.e., LUR variables or PM2.5 plus O3 in each model. Stratified models do not include adjustment for census tract-level 
neighborhood safety. 
(4) “LT” stands for “more local traffic impact” LUR model estimates. 
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Table 26. Mean (SD) Lung Function in L.A. FANS-2 Participants Ages 5-17 Years 

Lung Function Boys 
(1 or More 
Acceptable 

Curves, n=486) 

Boys 
(3 Acceptable and 

Reproducible 
Curves, n=221) 

Girls 
(1 or More 
Acceptable 

Curves, n=404) 

Girls (3 
Acceptable and 
Reproducible 

Curves, n=174) 
FEV1 (mL) 2629 (1036) 2730 (1018) 2369 (744) 2500 (616) 
FVC (mL) 3193 (1231) 3267 (1198) 2800 (861) 2958 (733) 
PEF (mL/s) 5758 (2291) 6039 (2130) 5347 (1947) 5712 (1552) 
FEF75 (mL/s) 1455 (818) 1491 (793) 1409 (707) 1419 (633) 
FEF25-75 (mL/s) 2807 (1332) 2940 (1263) 2695 (1069) 2828 (932) 
 
Table 27. Summary of Acceptable and Reproducible Spirometry Curves by Age Group  
(N, percent) 
Age  group 1 acceptable 

curve 
2 acceptable 
curves, not 

reproducible 

2 acceptable 
and 

reproducible 
curves 

3 acceptable 
curves, not 

reproducible 

3 acceptable 
and 

reproducible 
curves 

5-<10 years1 46 (21) 24 (11) 62 (28) 12 (5) 78 (35) 
10-<15 years 41 (10) 40 (10) 94 (22) 50 (12) 190 (46) 
≥15 years 30 (12) 22 (9) 46 (18) 28 (11) 127 (50) 
All ages2 117 (13) 86 (10) 202 (23) 90 (10) 395 (44) 
(1) Percents are based on all children of given age group with one or more acceptable curves (i.e., 222 for 5-<10 years, 415 for 10-<15 years and 253 for ≥15 years). 
(2) Percents are based on all children with one or more acceptable curves (n=890). 
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Table 28. Associations (Betas1, 95% CIs) between Annual Average Air Pollution Exposure Metrics (Current Home) and Lung Function 
Among L.A. FANS-2 Participants, Boys Ages 5–17 Years   

1 OR MORE ACCEPTABLE CURVES (n=486) 3 ACCEPTABLE AND REPRODUCIBLE CURVES (n=221) Lung 
Function  

Pollutant 
Adjusting for 

age, 
race/ethnicity, 
height, height2, 

overweight 

Final Model2 
HOME ONLY

Two-Pollutant 
Model3 

HOME ONLY

Two-Pollutant 
Model3 

HOME+SCHOOL

Adjusting for 
age, 

race/ethnicity, 
height, height2, 

overweight 

Final Model2 
HOME ONLY 

 Two-Pollutant 
Model3  

HOME ONLY 

Two-Pollutant 
Model3  

HOME+SCHOOL 

FEV1 
(mL) 

         

 NO -63 (-119, -8) -75 (-144, -6) -69 (-141, 2) -97(-176, -18) -70 (-148, 7) -45 (-147, 56) -48 (-146, 50) -44 (-149, 60) 
 NO2 -60 (-113, -7) -75 (-137 ,-14) -75 (-138, -12) -72 (-138, -6) -60 (-129, 8) -78 (-157, 0.5) -73 (-151, 5) -67 (-149, 16) 
 NOx -73 (-128, -17) -91 (-159, -24) -90 (-162, -18) -100 (-177, -22) -67 (-142, 8) -54 (-150, 43) -63 (-157, 30) -64 (-164, 36) 
 PM2.5 -33 (-71, 5) -52 (-98, -7) -50 (-99, -2) -46 (-95, 3) -47 (-96, 3) -62 (-121, -4) -50 (-111, 11) -55 (-114, 5) 

FVC (mL)          
 NO -52 (-119, 15) -60 (-141, 22) -56 (-141, 28) -86 (-179, 7) -46 (-134, 42) -43 (-164, 78) -50 (-170, 70) -80 (-205, 45) 
 NO2 -46 (-111, 18) -67 (-139, 4) -66 (-139, 7) -70 (-147, 6) -56 (-136, 25) -80 (-175, 16) -75 (-171, 22) -76 (-176, 24) 
 NOx -56 (-123, 12) -76 (-155, 4) -75 (-159, 9) -95 (-184, -5) -62 (-150, 25) -50 (-165, 65) -59 (-175, 56) -78 (-199, 43) 
 PM2.5 -28 (-73, 17) -45 (-97, 6) -47 (-102, 8) -44 (-99, 11) -49 (-107, 9) -56 (-126, 14) -48 (-121, 26) -58 (-129, 14) 
          

FEF75 
(mL/s) 

         

 NO -62 (-126, 2) -39 (-119, 40) -39 (-122 43) -58 (-150, 35) -39 (-133, 54) -30 (-154, 93) -11 (-135, 113) 20 (-113, 153) 
 NO2 -67 (-128, -5) -63 (-133, 7) -64 (-135, 8) -74 (-150, 1) -23 (-107, 62) -75 (-176, 26) -63 (-164, 38) -54 (-159, 51) 
 NOx -67 (-131, -2) -60 (-137, 18) -62 (–144, 19) -77 (-167, 12) -37 (-128, 54) -52 (-171, 67) -38 (-158, 83) -20 (-148, 108) 
 PM2.5 -47 (-91, -2) -56 (-108, -4) -62 (-117, -7) -62 (-119, -5) -34 (-95, 26) -103 (-174, -33) -68 (-143, 8) -78 (-154, -3) 
          

FEF25-75 
(mL/s) 

         

 NO -105 (-206, -4) -65 (-187, 57) -55 (-181, 72) -85 (-225, 54) -129 (-282, 25) -45 (-250, 159) -61 (-257, 135) -27 (-231, 178) 
 NO2 -93 (–188, 2) -104 (-212, 3) -99 (-208, 10) -115 (-229, -0.4) -91 (-227, 44) -137 (-297, 23) -114 (-272, 45) -114 (-275, 48) 
 NOx -108 (-208, -9) -101 (-220, 18) -93 (-218, 31) -116 (-251, 18) -151 (-301, -2) -99 (-289, 91) -101 (-289, 88) -83 (-278, 112) 
 PM2.5 -53 (-123, 16) -90 (-170, -10) -89 (-174, -4) -92 (-177, -7) -67 (-164, 30) -139 (-251, -26) -112 (-228, 4) -122 (-237, -6) 

(1) Interquartile ranges (IQRs) for each pollutant were: NO=10.9 ppb; NO2=5.9 ppb; NOx=17.1 ppb; PM2.5=2.4 µg/m3. 
(2) Adjusting for age, race/ethnicity, height, height2, overweight, income, no usual source of sick care, maternal asthma, furry pets in home, PCG smoking status, PCG 
education level, no. of neighbors talked to for 10 min in past 30 days, and census tract-level disadvantage.  
(3) LUR variables or PM2.5 plus O3 in each model. 
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Table 29. Associations (Betas1, 95% CIs) between Annual Average Air Pollution Exposure Metrics (5-Years Prior to Interview)  
and Lung Function Among L.A. FANS-2 Participants, Girls Ages 5–17 Years   

1 OR MORE ACCEPTABLE CURVES (n=404) Lung 
Function  

Pollutant 
Adjusting for age, 

race/ethnicity, 
height, height2,  
weight, weight2, 

overweight 

Final Model2 
HOME ONLY 

Two-Pollutant 
Model3  

 HOME ONLY 

Two-Pollutant 
Model3 

HOME+SCHOOL 

FEV1      
 NO -69 (-125, -14) -74 (-143, -5) -59 (-128, 9) -43 (-131, 45) 
 NO2 -52 (-106, 3) -81 (-142, -19) -66 (-127, -4) -65 (-137, 7) 
 NOx -63 (-118, -7) -79 (-145, -14) -66 (-133, 0.7) -78 (-157, 1) 
 PM2.5 -33 (-73, 7) -40 (-86, 7) -42 (-90, 5) -30 (-83, 24) 

FVC      
 NO -38 (-100, 23) -2 (-75, 72) 10 (-65, 85) 17 (-79, 113) 
 NO2 -21 (-80, 38) -5 (-73, 63) 19 (-49, 87) 8 (-70, 86) 
 NOx -38 (-98, 22) -4 (-74, 67) 9 9-64, 81) -23 (-111, 65) 
 PM2.5 -24 (-67, 18) -20 (-68, 27) 0.3 (-52, 52) -5 (-62, 52) 
      

PEF NO -129 (-290, 32) -123 (-326, 79) -178 (-383, 28) -322 (-572, -72) 
 NO2 -183 (-333, -32) -204 (-387, -21) -260 (-439, -81) -332 (-532, -132) 
 NOx -158 (-314, -1) -155 (-347, 38) -229 (-428, -31) -355 (-585, -125) 
 PM2.5 29 (-85, 142) -49 (-179, 80) -69 (-215, 77) -64 (-218, 91) 
      

FEF75 NO -52 (-133, 30) -94 (-186, -1) -79 (-170, 12) -89 (-200, 22) 
 NO2 -18 (-95, 58) -48 (-132, 36) -46 (-126, 33) -62 (-155, 30) 
 NOx -37 (-116, 42) -80 (-168, 7) -70 (-157, 18) -82 (-185, 22) 
 PM2.5 -2 (-62, 57) -13 (-74, 48) -9 (-73, 54) -36 (-109, 36) 
      

FEF25-75 NO -157 (-279, -36) -187 (-324, -50) -202 (-340, -63) -279 (-448, -110) 
 NO2 -103 (-220, 13) -171 (-297, -44) -150 (-278, -22) -207 (-356, -59) 
 NOx -151 (-269, -33) -173 (-302, -45) -220 (-354, -85) -287 (-447, -127) 
 PM2.5 -45 (-131, 42) -43 (-139, 53) -35 (-140, 71) -86 (-202, 29) 

(1) Interquartile ranges (IQRs) for each pollutant were: NO=10.9 ppb; NO2=5.8 ppb; NOx=16.7 ppb; PM2.5=2.4 µg/m3. 
(2) Adjusting for age, race/ethnicity, height, height2, weight, weight2, overweight, income, no usual source of sick care, maternal asthma, furry pets in home, PCG smoking 
status, foreign born status of PCG, group participation in past 12 months, no. of adults recogonize in neighborhood, and census tract-level disadvantage.  
(3) LUR variables or PM2.5 plus O3 in each model. 
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Table 30. Associations (Betas1, 95% CIs) between Annual Average Peak 8-Hour Ozone (Current 
Home) and Lung Function Among L.A. FANS-2 Participants, Girls Ages 5–17 Years  

Lung 
Function 

Adjusting for 
age, 

race/ethnicity, 
height, height2, 
weight, weight2, 

overweight 

Final Model2 
HOME ONLY 

Two-Pollutant 
Model3  

HOME ONLY 

Two-Pollutant 
Model3 

HOME+SCHOOL 

Girls with 1 or More Acceptable Curves (n=404) 
PEF 41 (-120, 202) -85 (-288, 118) -135 (-333, 63) -123 (-323, 76) 

Girls with 3 Acceptable and Reproducible Curves (n=174) 
PEF -183 (-381, 15) -398 (-641, -155) -435 (-681, -188) -420 (-668, -171) 

(1) Betas are per IQR increase of 29.9 ppb O3. 
(2) Adjusting for age, race/ethnicity, height, height2, weight, weight2, overweight, income, no usual source of sick care, 
maternal asthma, furry pets in home, PCG smoking status, foreign born status of PCG, group participation in past 12 months, no. 
of adults recogonize in neighborhood, and census tract-level disadvantage.  
(3) Two-pollutant model presented is O3 plus NO2; O3 effect estimates adjusting for NO, NOx and PM2.5 were very similar. 
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IX. GLOSSARY   
µg – microgram 
AADT – Annual Average Daily Traffic  
ADDRESS – A Distance Decay REgression Selection Strategy 
ATS - American Thoracic Society 
BC – black carbon 
BLUE - best linear unbiased estimate 
BMI - body mass index 
CALINE -- California Line Source Air Dispersion Model 
CHS – Children’s Health Study 
CI – confidence interval 
Coef – coefficient 
CT – census tract 
DEM – digital elevation model 
DEP – diesel exhaust particulate 
EC – elemental carbon 
ECAT – elemental carbon attributable to traffic sources 
EHC – Event History Calendar 
EPA –Environmental Protection Agency 
ETM+ - Landsat Enhanced Thematic Mapper Plus 
FACES - Fresno Asthmatic Children’s Environment Study 
FEF25-75 – forced expiratory mean flow between 25% and 75% of FVC 
FEF75 – forced expiratory mean flow at 75% of FVC 
FEV1 – forced expiratory volume after 1 second 
FVC – forced vital capacity 
GEE – generalized estimating equations 
GIS – Geographic Information System 
GPS – global positioning system 
HCHO – formaldehyde 
HCl – hydrochloric acid 
HDL – high-density lipoprotein 
HNO3 – nitric acid 
HPA – hypothalamic-pituitary-adrenal 
HPMS – Highway Performance Monitoring System 
ICC - intraclass correlation coefficient 
IgE – immunoglobulin E 
IQR – inter-quartile range 
ISAAC - International Study of Asthma and Allergies in Childhood 
km – kilometer 
L.A. FANS – Los Angeles Family and Neighborhood Study 
L.A. FANS-1 -- Los Angeles Family and Neighborhood Study, Wave One Survey 
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L.A. FANS-2 -- Los Angeles Family and Neighborhood Study, Wave Two Survey 
LT – low traffic model 
LUR – land use regression  
m – meter 
mL – milliliter 
mL/s – milliliter per second 
MME - normalized mean error 
MMEF – maximum midexpiratory flow 
MPO – Metropolitan Planning Organization 
NMB - normalized mean bias 
NO – nitric oxide 
NO2 – nitrogen dioxide 
NOx – nitrogen oxides 
O3 – ozone (gas) 
OC – organic carbon 
OR – odds ratio 
PAH – polycyclic aromatic hydrocarbons 
PCG – primary caregiver 
PEF – peak expiratory flow 
PM10 – particulate matter less than 10 μm in aerodynamic diameter 
PM2.5 – particulate matter less than 2.5 μm in aerodynamic diameter 
ppb – parts per billion 
ROS - reactive oxygen species 
RSA - Randomly Selected Adult 
RSC - Randomly Selected Child 
RTI – Research Triangle Institute 
SCAG – Southern California Association of Governments 
SCAQMD - South Coast Air Quality Management District 
SD – standard deviation 
SES – socioeconomic status 
SIB – sibling of the Randomly Selected Child 
SO2 – sulfer dioxide 
Std Err – standard error 
TRAPCA – Traffic-Related Air Pollution and Childhood Asthma 
TSP – total suspended particles 
UF – particles less than 0.1 µm in aerodynamic diameter  
UTM – Universal Transverse Mercator 
VIF – variance inflation factor 
VMT – vehicle miles traveled 
WGS84 - World Geodetic System of 1984 
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X. APPENDICES 
Appendix A – Example Field Log Sheet – Site Description 
Appendix B – Example Field Log Sheet – Installation and Collection Times, GPS Coordinates 
Appendix C – Final Report for Contract 05-311 and Contract 05-312, Spirometry Training and 
Grading of Spirometry Test Results in conjunction with Wave Two of the Los Angeles Family 
and Neighborhood Survey (L.A. FANS) 
Appendix D – L.A. FANS-2 Spirometry Protocol 
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